基于Devs和语义技术的SARS-CoV-2复制机制建模

A. Ayadi, C. Frydman, Wissame Laddada, L. Soualmia, C. Zanni-Merk, India L'Hote, E. Grellet, I. Imbert
{"title":"基于Devs和语义技术的SARS-CoV-2复制机制建模","authors":"A. Ayadi, C. Frydman, Wissame Laddada, L. Soualmia, C. Zanni-Merk, India L'Hote, E. Grellet, I. Imbert","doi":"10.23919/ANNSIM52504.2021.9552040","DOIUrl":null,"url":null,"abstract":"The search for inhibitors of SARS-CoV-2 viral replication depends on an in-depth knowledge of the different stages of the viral cycle. The macro-molecular level focuses on the interactions between the virus and the infected cell, while the micro-molecular level focuses on the different biochemical reactions leading to the production of new viruses. Here, a hybrid approach for modeling the SARS-CoV-2 viral replication in the micro- and macro-molecular levels is presented. The proposed approach combines ontology engineering and DEVS modeling. Biological knowledge at the micro-level of the viral system is capitalized by ontological models, while the dynamic behavior of SARS-CoV-2 molecular mechanisms are modeled by DEVS models. The proposed DEVS approach uses ontological concepts and SWRL rules to compute the main functions and behaviour of the molecular components involved in the SARS-CoV-2 replication cycle. We illustrate the proposed approach through the simulation of the SARS-CoV-2 proteins production by cellular ribosomes.","PeriodicalId":6782,"journal":{"name":"2021 Annual Modeling and Simulation Conference (ANNSIM)","volume":"24 1","pages":"1-12"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Combining Devs and Semantic Technologies for Modeling the SARS-CoV-2 Replication Machinery\",\"authors\":\"A. Ayadi, C. Frydman, Wissame Laddada, L. Soualmia, C. Zanni-Merk, India L'Hote, E. Grellet, I. Imbert\",\"doi\":\"10.23919/ANNSIM52504.2021.9552040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The search for inhibitors of SARS-CoV-2 viral replication depends on an in-depth knowledge of the different stages of the viral cycle. The macro-molecular level focuses on the interactions between the virus and the infected cell, while the micro-molecular level focuses on the different biochemical reactions leading to the production of new viruses. Here, a hybrid approach for modeling the SARS-CoV-2 viral replication in the micro- and macro-molecular levels is presented. The proposed approach combines ontology engineering and DEVS modeling. Biological knowledge at the micro-level of the viral system is capitalized by ontological models, while the dynamic behavior of SARS-CoV-2 molecular mechanisms are modeled by DEVS models. The proposed DEVS approach uses ontological concepts and SWRL rules to compute the main functions and behaviour of the molecular components involved in the SARS-CoV-2 replication cycle. We illustrate the proposed approach through the simulation of the SARS-CoV-2 proteins production by cellular ribosomes.\",\"PeriodicalId\":6782,\"journal\":{\"name\":\"2021 Annual Modeling and Simulation Conference (ANNSIM)\",\"volume\":\"24 1\",\"pages\":\"1-12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Annual Modeling and Simulation Conference (ANNSIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ANNSIM52504.2021.9552040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Annual Modeling and Simulation Conference (ANNSIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ANNSIM52504.2021.9552040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

寻找SARS-CoV-2病毒复制抑制剂取决于对病毒周期不同阶段的深入了解。大分子水平侧重于病毒与受感染细胞之间的相互作用,而微分子水平侧重于导致新病毒产生的不同生化反应。本文提出了一种在微观和大分子水平上模拟SARS-CoV-2病毒复制的混合方法。该方法将本体工程与DEVS建模相结合。病毒系统微观层面的生物学知识通过本体论模型得到充分利用,而SARS-CoV-2分子机制的动态行为通过DEVS模型得到模拟。提出的DEVS方法使用本体论概念和SWRL规则来计算SARS-CoV-2复制周期中涉及的分子成分的主要功能和行为。我们通过模拟细胞核糖体产生SARS-CoV-2蛋白来说明所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combining Devs and Semantic Technologies for Modeling the SARS-CoV-2 Replication Machinery
The search for inhibitors of SARS-CoV-2 viral replication depends on an in-depth knowledge of the different stages of the viral cycle. The macro-molecular level focuses on the interactions between the virus and the infected cell, while the micro-molecular level focuses on the different biochemical reactions leading to the production of new viruses. Here, a hybrid approach for modeling the SARS-CoV-2 viral replication in the micro- and macro-molecular levels is presented. The proposed approach combines ontology engineering and DEVS modeling. Biological knowledge at the micro-level of the viral system is capitalized by ontological models, while the dynamic behavior of SARS-CoV-2 molecular mechanisms are modeled by DEVS models. The proposed DEVS approach uses ontological concepts and SWRL rules to compute the main functions and behaviour of the molecular components involved in the SARS-CoV-2 replication cycle. We illustrate the proposed approach through the simulation of the SARS-CoV-2 proteins production by cellular ribosomes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信