利用gan增强小训练数据增强图像分类性能

S. Hung, J. Q. Gan
{"title":"利用gan增强小训练数据增强图像分类性能","authors":"S. Hung, J. Q. Gan","doi":"10.1109/ICPR48806.2021.9412399","DOIUrl":null,"url":null,"abstract":"It is difficult to achieve high performance without sufficient training data for deep convolutional neural networks (DCNNs) to learn. Data augmentation plays an important role in improving robustness and preventing overfitting in machine learning for many applications such as image classification. In this paper, a novel method for data augmentation is proposed to solve the problem of machine learning with small training datasets. The proposed method can synthesise similar images with rich diversity from only a single original training sample to increase the number of training data by using generative adversarial networks (GANs). It is expected that the synthesised images possess class-informative features, which may be in the validation or testing data but not in the training data due to that the training dataset is small, and thus they can be effective as augmented training data to improve the classification accuracy of DCNNs. The experimental results have demonstrated that the proposed method with a novel GAN framework for image training data augmentation can significantly enhance the classification performance of DCNNs for applications where original training data is limited.","PeriodicalId":6783,"journal":{"name":"2020 25th International Conference on Pattern Recognition (ICPR)","volume":"5 1","pages":"3350-3356"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Augmentation of Small Training Data Using GANs for Enhancing the Performance of Image Classification\",\"authors\":\"S. Hung, J. Q. Gan\",\"doi\":\"10.1109/ICPR48806.2021.9412399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is difficult to achieve high performance without sufficient training data for deep convolutional neural networks (DCNNs) to learn. Data augmentation plays an important role in improving robustness and preventing overfitting in machine learning for many applications such as image classification. In this paper, a novel method for data augmentation is proposed to solve the problem of machine learning with small training datasets. The proposed method can synthesise similar images with rich diversity from only a single original training sample to increase the number of training data by using generative adversarial networks (GANs). It is expected that the synthesised images possess class-informative features, which may be in the validation or testing data but not in the training data due to that the training dataset is small, and thus they can be effective as augmented training data to improve the classification accuracy of DCNNs. The experimental results have demonstrated that the proposed method with a novel GAN framework for image training data augmentation can significantly enhance the classification performance of DCNNs for applications where original training data is limited.\",\"PeriodicalId\":6783,\"journal\":{\"name\":\"2020 25th International Conference on Pattern Recognition (ICPR)\",\"volume\":\"5 1\",\"pages\":\"3350-3356\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 25th International Conference on Pattern Recognition (ICPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR48806.2021.9412399\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 25th International Conference on Pattern Recognition (ICPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR48806.2021.9412399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

如果没有足够的训练数据供深度卷积神经网络(DCNNs)学习,很难达到高性能。在图像分类等机器学习的许多应用中,数据增强在提高鲁棒性和防止过拟合方面起着重要作用。本文提出了一种新的数据增强方法来解决小训练数据集的机器学习问题。该方法利用生成式对抗网络(GANs)从单个原始训练样本中合成具有丰富多样性的相似图像,以增加训练数据的数量。期望合成的图像具有类信息特征,由于训练数据较小,这些特征可能存在于验证或测试数据中,而不存在于训练数据中,从而可以有效地作为增强训练数据来提高DCNNs的分类精度。实验结果表明,基于GAN框架的图像训练数据增强方法可以显著提高原始训练数据有限的应用中DCNNs的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Augmentation of Small Training Data Using GANs for Enhancing the Performance of Image Classification
It is difficult to achieve high performance without sufficient training data for deep convolutional neural networks (DCNNs) to learn. Data augmentation plays an important role in improving robustness and preventing overfitting in machine learning for many applications such as image classification. In this paper, a novel method for data augmentation is proposed to solve the problem of machine learning with small training datasets. The proposed method can synthesise similar images with rich diversity from only a single original training sample to increase the number of training data by using generative adversarial networks (GANs). It is expected that the synthesised images possess class-informative features, which may be in the validation or testing data but not in the training data due to that the training dataset is small, and thus they can be effective as augmented training data to improve the classification accuracy of DCNNs. The experimental results have demonstrated that the proposed method with a novel GAN framework for image training data augmentation can significantly enhance the classification performance of DCNNs for applications where original training data is limited.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信