纳米流体的传热成本效益

L. Pan, D. Xu, Q. Yao
{"title":"纳米流体的传热成本效益","authors":"L. Pan, D. Xu, Q. Yao","doi":"10.1201/9780429187469-21","DOIUrl":null,"url":null,"abstract":"When metal or oxide nano particles are dispersed in liquids to form nanofluids, the particles improve thermal conductivity of the liquids. Therefore, it is suggested to use nanofluids as coolants to improve heat-exchanger efficiency. However, the nano particles also cause the increase of fluid viscosity. The present paper has numerically studied the flow and heat transfer of the nanofluids in a 2-D microchannel by using Computational Fluid Dynamics method. It is found that although the nano particles enhance the heat transfer rate of the fluids about certain percentage, the nano particles also cause an increase of viscous shear stress, and further causes an increase of the power consumption to deliver the nanofluids through the microchannels. To explore their advantage, nanofluids are suggested to be used as coolants to improve the thermal efficiency and to reduce the size of heat exchangers. However, the nanofluids also enlarge fluid shear stresses on solid interfaces. This is because that the nano particles increase the viscosity of the fluids. The enlarged shear stresses will increase the fluid drags. This makes it difficult for the nanofluids to flow through the fluidic systems comparing with those base liquids (2, 3). Therefore, a big pressure difference is required to drive the nanofluids to flow through the fluidic systems. This in turn will cause more power consumption. So, one has to carefully analyze the gain and the loss or cost-effectiveness, before adopting the nanofluids as coolants. To investigate the cost-effectiveness of using nanofluids as coolants, Computational Fluid Dynamics method is employed to directly simulate the flow and heat transfer of the nanofluids in a 2-dimensional micro channel in the present paper. Basically there are two different numerical methods for doing these. One is based on molecular dynamics which directly focuses on the molecular behaviors of the nano particles. This method needs more CPU time and computer memory. The other is based on Navier-Stokes questions with introducing the thermal and dynamic parameters of the nanofluids obtained from the mixture fluid theory and experimental measurements. The latter provides useful information for researchers and engineers to understand the flow and heat transfer profiles of the fluidic devices with less CPU time and computer memory (2, 3). Therefore, it is employed in the present paper to study the cost-effectiveness of the nanofluids in a 2-dimensional micro channel.","PeriodicalId":6429,"journal":{"name":"2007 Cleantech Conference and Trade Show Cleantech 2007","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2006-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Heat Transfer Cost-Effectiveness of Nanofluids\",\"authors\":\"L. Pan, D. Xu, Q. Yao\",\"doi\":\"10.1201/9780429187469-21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When metal or oxide nano particles are dispersed in liquids to form nanofluids, the particles improve thermal conductivity of the liquids. Therefore, it is suggested to use nanofluids as coolants to improve heat-exchanger efficiency. However, the nano particles also cause the increase of fluid viscosity. The present paper has numerically studied the flow and heat transfer of the nanofluids in a 2-D microchannel by using Computational Fluid Dynamics method. It is found that although the nano particles enhance the heat transfer rate of the fluids about certain percentage, the nano particles also cause an increase of viscous shear stress, and further causes an increase of the power consumption to deliver the nanofluids through the microchannels. To explore their advantage, nanofluids are suggested to be used as coolants to improve the thermal efficiency and to reduce the size of heat exchangers. However, the nanofluids also enlarge fluid shear stresses on solid interfaces. This is because that the nano particles increase the viscosity of the fluids. The enlarged shear stresses will increase the fluid drags. This makes it difficult for the nanofluids to flow through the fluidic systems comparing with those base liquids (2, 3). Therefore, a big pressure difference is required to drive the nanofluids to flow through the fluidic systems. This in turn will cause more power consumption. So, one has to carefully analyze the gain and the loss or cost-effectiveness, before adopting the nanofluids as coolants. To investigate the cost-effectiveness of using nanofluids as coolants, Computational Fluid Dynamics method is employed to directly simulate the flow and heat transfer of the nanofluids in a 2-dimensional micro channel in the present paper. Basically there are two different numerical methods for doing these. One is based on molecular dynamics which directly focuses on the molecular behaviors of the nano particles. This method needs more CPU time and computer memory. The other is based on Navier-Stokes questions with introducing the thermal and dynamic parameters of the nanofluids obtained from the mixture fluid theory and experimental measurements. The latter provides useful information for researchers and engineers to understand the flow and heat transfer profiles of the fluidic devices with less CPU time and computer memory (2, 3). Therefore, it is employed in the present paper to study the cost-effectiveness of the nanofluids in a 2-dimensional micro channel.\",\"PeriodicalId\":6429,\"journal\":{\"name\":\"2007 Cleantech Conference and Trade Show Cleantech 2007\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 Cleantech Conference and Trade Show Cleantech 2007\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1201/9780429187469-21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Cleantech Conference and Trade Show Cleantech 2007","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9780429187469-21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

当金属或氧化物纳米颗粒分散在液体中形成纳米流体时,纳米颗粒提高了液体的导热性。因此,建议使用纳米流体作为冷却剂来提高换热器的效率。然而,纳米颗粒也会引起流体粘度的增加。本文采用计算流体力学方法对二维微通道内纳米流体的流动和传热进行了数值研究。研究发现,纳米颗粒虽然在一定程度上提高了流体的换热速率,但也造成了黏性剪切应力的增加,从而导致纳米流体通过微通道的输送功率的增加。为了探索纳米流体的优势,建议使用纳米流体作为冷却剂,以提高热效率并减小换热器的尺寸。然而,纳米流体也增大了固体界面上的流体剪切应力。这是因为纳米颗粒增加了流体的粘度。剪切应力的增大会增大流体阻力。这使得纳米流体与基液相比难以通过流体系统(2,3)。因此,需要较大的压差来驱动纳米流体通过流体系统。这反过来又会导致更多的电力消耗。因此,在采用纳米流体作为冷却剂之前,必须仔细分析其得失或成本效益。为了研究纳米流体作为冷却剂的成本效益,本文采用计算流体动力学方法直接模拟了纳米流体在二维微通道中的流动和传热。基本上有两种不同的数值方法来做这些。一种是基于分子动力学,直接关注纳米粒子的分子行为。这种方法需要更多的CPU时间和计算机内存。另一种是基于Navier-Stokes问题,引入由混合流体理论和实验测量得到的纳米流体的热力学和动力学参数。后者为研究人员和工程师了解具有较少CPU时间和计算机内存的流体装置的流动和传热曲线提供了有用的信息(2,3)。因此,本文采用它来研究二维微通道中纳米流体的成本效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heat Transfer Cost-Effectiveness of Nanofluids
When metal or oxide nano particles are dispersed in liquids to form nanofluids, the particles improve thermal conductivity of the liquids. Therefore, it is suggested to use nanofluids as coolants to improve heat-exchanger efficiency. However, the nano particles also cause the increase of fluid viscosity. The present paper has numerically studied the flow and heat transfer of the nanofluids in a 2-D microchannel by using Computational Fluid Dynamics method. It is found that although the nano particles enhance the heat transfer rate of the fluids about certain percentage, the nano particles also cause an increase of viscous shear stress, and further causes an increase of the power consumption to deliver the nanofluids through the microchannels. To explore their advantage, nanofluids are suggested to be used as coolants to improve the thermal efficiency and to reduce the size of heat exchangers. However, the nanofluids also enlarge fluid shear stresses on solid interfaces. This is because that the nano particles increase the viscosity of the fluids. The enlarged shear stresses will increase the fluid drags. This makes it difficult for the nanofluids to flow through the fluidic systems comparing with those base liquids (2, 3). Therefore, a big pressure difference is required to drive the nanofluids to flow through the fluidic systems. This in turn will cause more power consumption. So, one has to carefully analyze the gain and the loss or cost-effectiveness, before adopting the nanofluids as coolants. To investigate the cost-effectiveness of using nanofluids as coolants, Computational Fluid Dynamics method is employed to directly simulate the flow and heat transfer of the nanofluids in a 2-dimensional micro channel in the present paper. Basically there are two different numerical methods for doing these. One is based on molecular dynamics which directly focuses on the molecular behaviors of the nano particles. This method needs more CPU time and computer memory. The other is based on Navier-Stokes questions with introducing the thermal and dynamic parameters of the nanofluids obtained from the mixture fluid theory and experimental measurements. The latter provides useful information for researchers and engineers to understand the flow and heat transfer profiles of the fluidic devices with less CPU time and computer memory (2, 3). Therefore, it is employed in the present paper to study the cost-effectiveness of the nanofluids in a 2-dimensional micro channel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信