用Bagley - Torvik方程分析粘弹阻尼结构的稳定性

Priyadharsini Sivaraj
{"title":"用Bagley - Torvik方程分析粘弹阻尼结构的稳定性","authors":"Priyadharsini Sivaraj","doi":"10.12723/mjs.65.4","DOIUrl":null,"url":null,"abstract":"The stability of fractional-order visco-elastically damped linear system Bagley Torvik equation is analyzed in this paper. The fundamental novelty of this paper is the application of Caputo derivative. Prevailing sufficient spectral conditions are considered to guarantee the stability of linear models. Laplace transform, and Mittag-Leffler functions are utilized to develop the results. Furthermore, asymptotical stability of linear fractional-order models are also achieved through spectral values of the characteristic polynomials. Numerical examples are given to display the effectiveness of suggested method.","PeriodicalId":18050,"journal":{"name":"Mapana Journal of Sciences","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability analysis of visco-elastically damped structure through Bagley Torvik Equation\",\"authors\":\"Priyadharsini Sivaraj\",\"doi\":\"10.12723/mjs.65.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The stability of fractional-order visco-elastically damped linear system Bagley Torvik equation is analyzed in this paper. The fundamental novelty of this paper is the application of Caputo derivative. Prevailing sufficient spectral conditions are considered to guarantee the stability of linear models. Laplace transform, and Mittag-Leffler functions are utilized to develop the results. Furthermore, asymptotical stability of linear fractional-order models are also achieved through spectral values of the characteristic polynomials. Numerical examples are given to display the effectiveness of suggested method.\",\"PeriodicalId\":18050,\"journal\":{\"name\":\"Mapana Journal of Sciences\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mapana Journal of Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12723/mjs.65.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mapana Journal of Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12723/mjs.65.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文分析了分数阶粘弹性阻尼线性系统的稳定性。本文的基本新颖之处在于卡普托导数的应用。考虑了保证线性模型稳定性的普遍的充分谱条件。利用拉普拉斯变换和Mittag-Leffler函数展开结果。此外,还通过特征多项式的谱值实现了线性分数阶模型的渐近稳定性。通过数值算例验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability analysis of visco-elastically damped structure through Bagley Torvik Equation
The stability of fractional-order visco-elastically damped linear system Bagley Torvik equation is analyzed in this paper. The fundamental novelty of this paper is the application of Caputo derivative. Prevailing sufficient spectral conditions are considered to guarantee the stability of linear models. Laplace transform, and Mittag-Leffler functions are utilized to develop the results. Furthermore, asymptotical stability of linear fractional-order models are also achieved through spectral values of the characteristic polynomials. Numerical examples are given to display the effectiveness of suggested method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信