大多数大型映射类组都不能使用Tits

IF 0.6 3区 数学 Q3 MATHEMATICS
Daniel Allcock
{"title":"大多数大型映射类组都不能使用Tits","authors":"Daniel Allcock","doi":"10.2140/agt.2021.21.3675","DOIUrl":null,"url":null,"abstract":"Let $X$ be a surface, possibly with boundary. Suppose it has infinite genus or infinitely many punctures, or a closed subset which is a disk with a Cantor set removed from its interior. For example, $X$ could be any surface of infinite type with only finitely many boundary components. We prove that the mapping class group of $X$ does not satisfy the Tits Alternative. That is, Map$(X)$ contains a finitely generated subgroup that is not virtually solvable and contains no nonabelian free group.","PeriodicalId":50826,"journal":{"name":"Algebraic and Geometric Topology","volume":"2 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Most big mapping class groups fail the Tits alternative\",\"authors\":\"Daniel Allcock\",\"doi\":\"10.2140/agt.2021.21.3675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $X$ be a surface, possibly with boundary. Suppose it has infinite genus or infinitely many punctures, or a closed subset which is a disk with a Cantor set removed from its interior. For example, $X$ could be any surface of infinite type with only finitely many boundary components. We prove that the mapping class group of $X$ does not satisfy the Tits Alternative. That is, Map$(X)$ contains a finitely generated subgroup that is not virtually solvable and contains no nonabelian free group.\",\"PeriodicalId\":50826,\"journal\":{\"name\":\"Algebraic and Geometric Topology\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic and Geometric Topology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/agt.2021.21.3675\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic and Geometric Topology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/agt.2021.21.3675","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

设X是一个曲面,可能有边界。假设它有无穷个亏格或无穷多个点,或者一个封闭子集,它是一个从其内部移除了康托集的圆盘。例如,$X$可以是只有有限个边界分量的无限型曲面。我们证明了$X$的映射类组不满足Tits的可选性。也就是说,Map$(X)$包含一个有限生成的子群,该子群实际上是不可解的,并且不包含非abel自由群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Most big mapping class groups fail the Tits alternative
Let $X$ be a surface, possibly with boundary. Suppose it has infinite genus or infinitely many punctures, or a closed subset which is a disk with a Cantor set removed from its interior. For example, $X$ could be any surface of infinite type with only finitely many boundary components. We prove that the mapping class group of $X$ does not satisfy the Tits Alternative. That is, Map$(X)$ contains a finitely generated subgroup that is not virtually solvable and contains no nonabelian free group.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Algebraic and Geometric Topology is a fully refereed journal covering all of topology, broadly understood.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信