离皮马印第安人远点:二元回归作为贝叶斯计算的基准

N. Chopin, James Ridgway
{"title":"离皮马印第安人远点:二元回归作为贝叶斯计算的基准","authors":"N. Chopin, James Ridgway","doi":"10.1214/16-STS581","DOIUrl":null,"url":null,"abstract":"Abstract. Whenever a new approach to perform Bayesian computation is introduced, a common practice is to showcase this approach on a binary regression model and datasets of moderate size. This paper discusses to which extent this practice is sound. It also reviews the current state of the art of Bayesian computation, using binary regression as a running example. Both sampling-based algorithms (importance sampling, MCMC and SMC) and fast approximations (Laplace and EP) are covered. Extensive numerical results are provided, some of which might go against conventional wisdom regarding the effectiveness of certain algorithms. Implications for other problems (variable selection) and other models are also discussed.","PeriodicalId":8446,"journal":{"name":"arXiv: Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":"{\"title\":\"Leave Pima Indians alone: binary regression as a benchmark for Bayesian computation\",\"authors\":\"N. Chopin, James Ridgway\",\"doi\":\"10.1214/16-STS581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Whenever a new approach to perform Bayesian computation is introduced, a common practice is to showcase this approach on a binary regression model and datasets of moderate size. This paper discusses to which extent this practice is sound. It also reviews the current state of the art of Bayesian computation, using binary regression as a running example. Both sampling-based algorithms (importance sampling, MCMC and SMC) and fast approximations (Laplace and EP) are covered. Extensive numerical results are provided, some of which might go against conventional wisdom regarding the effectiveness of certain algorithms. Implications for other problems (variable selection) and other models are also discussed.\",\"PeriodicalId\":8446,\"journal\":{\"name\":\"arXiv: Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"63\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/16-STS581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/16-STS581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 63

摘要

摘要每当引入一种执行贝叶斯计算的新方法时,通常的做法是在中等大小的二元回归模型和数据集上展示这种方法。本文讨论了这种做法在多大程度上是合理的。它还回顾了贝叶斯计算技术的当前状态,使用二元回归作为一个运行的例子。包括基于采样的算法(重要性采样,MCMC和SMC)和快速逼近(拉普拉斯和EP)。提供了广泛的数值结果,其中一些可能违背关于某些算法有效性的传统智慧。对其他问题(变量选择)和其他模型的含义也进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leave Pima Indians alone: binary regression as a benchmark for Bayesian computation
Abstract. Whenever a new approach to perform Bayesian computation is introduced, a common practice is to showcase this approach on a binary regression model and datasets of moderate size. This paper discusses to which extent this practice is sound. It also reviews the current state of the art of Bayesian computation, using binary regression as a running example. Both sampling-based algorithms (importance sampling, MCMC and SMC) and fast approximations (Laplace and EP) are covered. Extensive numerical results are provided, some of which might go against conventional wisdom regarding the effectiveness of certain algorithms. Implications for other problems (variable selection) and other models are also discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信