状态空间模型的柔性鲁棒粒子回火

IF 2 Q2 ECONOMICS
David Gunawan , Robert Kohn , Minh Ngoc Tran
{"title":"状态空间模型的柔性鲁棒粒子回火","authors":"David Gunawan ,&nbsp;Robert Kohn ,&nbsp;Minh Ngoc Tran","doi":"10.1016/j.ecosta.2022.09.003","DOIUrl":null,"url":null,"abstract":"<div><div><span><span><span><span>Density tempering (also called density annealing) is a sequential Monte Carlo approach to </span>Bayesian inference<span> for general state models which is an alternative to Markov chain Monte Carlo. When applied to state space models, it moves a collection of parameters and latent states (which are called particles) through a number of stages, with each stage having its own </span></span>target distribution<span>. The particles are initially generated from a distribution that is easy to sample from, e.g. the prior; the target at the final stage is the posterior distribution. Tempering is usually carried out either in batch mode, involving all the data at each stage, or sequentially with observations added at each stage, which is called data tempering. Efficient Markov moves for generating the parameters and states for each stage of particle based density tempering are proposed. This allows the proposed SMC methods to increase (scale up) the number of parameters and states that can be handled. Most current methods use a pseudo-marginal Markov move step with the states “integrated out”, and the parameters generated by a </span></span>random walk<span><span> proposal; although this strategy is general, it can be very inefficient when the states or parameters are high dimensional. By adding batch tempering at each stage, previous methods are extended to make data tempering more robust to outliers and structural changes for models with intractable likelihoods. The performance of the proposed methods is evaluated using univariate </span>stochastic volatility models with outliers and structural breaks, and high dimensional factor stochastic volatility models having many parameters and many latent states.</span></span><span><span><sup>1</sup></span></span></div></div>","PeriodicalId":54125,"journal":{"name":"Econometrics and Statistics","volume":"33 ","pages":"Pages 35-55"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexible and Robust Particle Tempering for State Space Models\",\"authors\":\"David Gunawan ,&nbsp;Robert Kohn ,&nbsp;Minh Ngoc Tran\",\"doi\":\"10.1016/j.ecosta.2022.09.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><span><span><span><span>Density tempering (also called density annealing) is a sequential Monte Carlo approach to </span>Bayesian inference<span> for general state models which is an alternative to Markov chain Monte Carlo. When applied to state space models, it moves a collection of parameters and latent states (which are called particles) through a number of stages, with each stage having its own </span></span>target distribution<span>. The particles are initially generated from a distribution that is easy to sample from, e.g. the prior; the target at the final stage is the posterior distribution. Tempering is usually carried out either in batch mode, involving all the data at each stage, or sequentially with observations added at each stage, which is called data tempering. Efficient Markov moves for generating the parameters and states for each stage of particle based density tempering are proposed. This allows the proposed SMC methods to increase (scale up) the number of parameters and states that can be handled. Most current methods use a pseudo-marginal Markov move step with the states “integrated out”, and the parameters generated by a </span></span>random walk<span><span> proposal; although this strategy is general, it can be very inefficient when the states or parameters are high dimensional. By adding batch tempering at each stage, previous methods are extended to make data tempering more robust to outliers and structural changes for models with intractable likelihoods. The performance of the proposed methods is evaluated using univariate </span>stochastic volatility models with outliers and structural breaks, and high dimensional factor stochastic volatility models having many parameters and many latent states.</span></span><span><span><sup>1</sup></span></span></div></div>\",\"PeriodicalId\":54125,\"journal\":{\"name\":\"Econometrics and Statistics\",\"volume\":\"33 \",\"pages\":\"Pages 35-55\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452306222000843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452306222000843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flexible and Robust Particle Tempering for State Space Models
Density tempering (also called density annealing) is a sequential Monte Carlo approach to Bayesian inference for general state models which is an alternative to Markov chain Monte Carlo. When applied to state space models, it moves a collection of parameters and latent states (which are called particles) through a number of stages, with each stage having its own target distribution. The particles are initially generated from a distribution that is easy to sample from, e.g. the prior; the target at the final stage is the posterior distribution. Tempering is usually carried out either in batch mode, involving all the data at each stage, or sequentially with observations added at each stage, which is called data tempering. Efficient Markov moves for generating the parameters and states for each stage of particle based density tempering are proposed. This allows the proposed SMC methods to increase (scale up) the number of parameters and states that can be handled. Most current methods use a pseudo-marginal Markov move step with the states “integrated out”, and the parameters generated by a random walk proposal; although this strategy is general, it can be very inefficient when the states or parameters are high dimensional. By adding batch tempering at each stage, previous methods are extended to make data tempering more robust to outliers and structural changes for models with intractable likelihoods. The performance of the proposed methods is evaluated using univariate stochastic volatility models with outliers and structural breaks, and high dimensional factor stochastic volatility models having many parameters and many latent states.1
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
10.50%
发文量
84
期刊介绍: Econometrics and Statistics is the official journal of the networks Computational and Financial Econometrics and Computational and Methodological Statistics. It publishes research papers in all aspects of econometrics and statistics and comprises of the two sections Part A: Econometrics and Part B: Statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信