{"title":"热环境视角下的太阳能辅助三联发电系统性能评价","authors":"M. Sharma, O. Singh, A. Shukla","doi":"10.13052/dgaej2156-3306.3813","DOIUrl":null,"url":null,"abstract":"Nowadays, the trigeneration systems are proving more promising than a combined cycle system. In terms of efficiency and reliability, these systems meet the typical requirements of cooling heating power in various applications. This work investigated the thermodynamic and environmental characteristics of a solar-based tri-generation system. The studied system consists of gas turbine and steam turbine modules along with heating and cooling provisions as per demand. The integrated system using parabolic trough collectors and also uses steam injected gas turbines for performance improvement. The overall performance of the proposed work is compared with and without a steam injection. The effect of integration of the solar cycle and steam injection for the trigeneration system is assessed. Further, carbon footprint rejected to the environment is also estimated. It is observed that the work output and trigeneration efficiency improved, and the carbon footprint gets reduced in the range varying between 10–40% for the cases studied.","PeriodicalId":11205,"journal":{"name":"Distributed Generation & Alternative Energy Journal","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Performance Evaluation of Solar-assisted Trigeneration System in Thermo-environmental Perspective\",\"authors\":\"M. Sharma, O. Singh, A. Shukla\",\"doi\":\"10.13052/dgaej2156-3306.3813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, the trigeneration systems are proving more promising than a combined cycle system. In terms of efficiency and reliability, these systems meet the typical requirements of cooling heating power in various applications. This work investigated the thermodynamic and environmental characteristics of a solar-based tri-generation system. The studied system consists of gas turbine and steam turbine modules along with heating and cooling provisions as per demand. The integrated system using parabolic trough collectors and also uses steam injected gas turbines for performance improvement. The overall performance of the proposed work is compared with and without a steam injection. The effect of integration of the solar cycle and steam injection for the trigeneration system is assessed. Further, carbon footprint rejected to the environment is also estimated. It is observed that the work output and trigeneration efficiency improved, and the carbon footprint gets reduced in the range varying between 10–40% for the cases studied.\",\"PeriodicalId\":11205,\"journal\":{\"name\":\"Distributed Generation & Alternative Energy Journal\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Distributed Generation & Alternative Energy Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/dgaej2156-3306.3813\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Distributed Generation & Alternative Energy Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/dgaej2156-3306.3813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance Evaluation of Solar-assisted Trigeneration System in Thermo-environmental Perspective
Nowadays, the trigeneration systems are proving more promising than a combined cycle system. In terms of efficiency and reliability, these systems meet the typical requirements of cooling heating power in various applications. This work investigated the thermodynamic and environmental characteristics of a solar-based tri-generation system. The studied system consists of gas turbine and steam turbine modules along with heating and cooling provisions as per demand. The integrated system using parabolic trough collectors and also uses steam injected gas turbines for performance improvement. The overall performance of the proposed work is compared with and without a steam injection. The effect of integration of the solar cycle and steam injection for the trigeneration system is assessed. Further, carbon footprint rejected to the environment is also estimated. It is observed that the work output and trigeneration efficiency improved, and the carbon footprint gets reduced in the range varying between 10–40% for the cases studied.