NBC模型,SVM,和C4 - 5在Covid-19大流行后的绩效评估中进行了比较

Galih Galih, Mindit Eriyadi
{"title":"NBC模型,SVM,和C4 - 5在Covid-19大流行后的绩效评估中进行了比较","authors":"Galih Galih, Mindit Eriyadi","doi":"10.31294/inf.v9i2.13772","DOIUrl":null,"url":null,"abstract":"Classifying employee performance appraisals is one way to improve the quality of workers. Employee performance appraisal is very important in determining good employees in a company. The process of appraisal of employee performance is only assessed manually in the absence of an application or system. The algorithm applied to employee performance utilizes the Naïve Bayes Classifier algorithm because it refers to previous research, there are several research findings. Using 310 employee data divided into 5 groups, namely Very High Performance, High Performance, Standard Performance, Low Performance and Ineffective Performance, this test uses the RapidMiner tool version 7.2.0 naïve Bayes Classifier algorithm model resulting in an accuracy rate of 84.52%, the C4.5 algorithm produces an accuracy rate of 74.19% and while using the Support Vector Machine algorithm produces an accuracy rate of 56.13%. If using the WEKA tools version 3.8.0 The Naïve Bayes Classifier algorithm model produces an accuracy rate of 81.93%, the C4.5 algorithm produces an accuracy rate of 75.80% and while using the Support Vector Machine algorithm produces an accuracy rate of 60.32%.","PeriodicalId":32029,"journal":{"name":"Proxies Jurnal Informatika","volume":"38 1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Perbandingan Model NBC, SVM, dan C4.5 dalam Mengukur Kinerja Karyawan Berprestasi Pasca Pandemi Covid-19\",\"authors\":\"Galih Galih, Mindit Eriyadi\",\"doi\":\"10.31294/inf.v9i2.13772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classifying employee performance appraisals is one way to improve the quality of workers. Employee performance appraisal is very important in determining good employees in a company. The process of appraisal of employee performance is only assessed manually in the absence of an application or system. The algorithm applied to employee performance utilizes the Naïve Bayes Classifier algorithm because it refers to previous research, there are several research findings. Using 310 employee data divided into 5 groups, namely Very High Performance, High Performance, Standard Performance, Low Performance and Ineffective Performance, this test uses the RapidMiner tool version 7.2.0 naïve Bayes Classifier algorithm model resulting in an accuracy rate of 84.52%, the C4.5 algorithm produces an accuracy rate of 74.19% and while using the Support Vector Machine algorithm produces an accuracy rate of 56.13%. If using the WEKA tools version 3.8.0 The Naïve Bayes Classifier algorithm model produces an accuracy rate of 81.93%, the C4.5 algorithm produces an accuracy rate of 75.80% and while using the Support Vector Machine algorithm produces an accuracy rate of 60.32%.\",\"PeriodicalId\":32029,\"journal\":{\"name\":\"Proxies Jurnal Informatika\",\"volume\":\"38 1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proxies Jurnal Informatika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31294/inf.v9i2.13772\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proxies Jurnal Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31294/inf.v9i2.13772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对员工绩效进行分类评估是提高员工素质的一种方法。员工绩效考核是决定公司优秀员工的重要因素。在没有应用程序或系统的情况下,员工绩效的评估过程只能手动评估。应用于员工绩效的算法采用Naïve贝叶斯分类器算法,因为它参考了前人的研究,有几个研究成果。本测试使用310个员工数据,分为5组,即非常高性能、高性能、标准性能、低性能和无效性能,使用RapidMiner工具版本7.2.0 naïve贝叶斯分类器算法模型,准确率为84.52%,C4.5算法准确率为74.19%,而使用支持向量机算法准确率为56.13%。如果使用WEKA工具版本3.8.0,Naïve贝叶斯分类器算法模型的准确率为81.93%,C4.5算法的准确率为75.80%,而使用支持向量机算法的准确率为60.32%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Perbandingan Model NBC, SVM, dan C4.5 dalam Mengukur Kinerja Karyawan Berprestasi Pasca Pandemi Covid-19
Classifying employee performance appraisals is one way to improve the quality of workers. Employee performance appraisal is very important in determining good employees in a company. The process of appraisal of employee performance is only assessed manually in the absence of an application or system. The algorithm applied to employee performance utilizes the Naïve Bayes Classifier algorithm because it refers to previous research, there are several research findings. Using 310 employee data divided into 5 groups, namely Very High Performance, High Performance, Standard Performance, Low Performance and Ineffective Performance, this test uses the RapidMiner tool version 7.2.0 naïve Bayes Classifier algorithm model resulting in an accuracy rate of 84.52%, the C4.5 algorithm produces an accuracy rate of 74.19% and while using the Support Vector Machine algorithm produces an accuracy rate of 56.13%. If using the WEKA tools version 3.8.0 The Naïve Bayes Classifier algorithm model produces an accuracy rate of 81.93%, the C4.5 algorithm produces an accuracy rate of 75.80% and while using the Support Vector Machine algorithm produces an accuracy rate of 60.32%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
20
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信