基于图/粒子的非线性系统实验设计方法

P. E. Valenzuela, J. Dahlin, C. Rojas, T. Schon
{"title":"基于图/粒子的非线性系统实验设计方法","authors":"P. E. Valenzuela, J. Dahlin, C. Rojas, T. Schon","doi":"10.3182/20140824-6-ZA-1003.00361","DOIUrl":null,"url":null,"abstract":"Abstract We propose an extended method for experiment design in nonlinear state space models. The proposed input design technique optimizes a scalar cost function of the information matrix, by computing the optimal stationary probability mass function (pmf) from which an input sequence is sampled. The feasible set of the stationary pmf is a polytope, allowing it to be expressed as a convex combination of its extreme points. The extreme points in the feasible set of pmf's can be computed using graph theory. Therefore, the final information matrix can be approximated as a convex combination of the information matrices associated with each extreme point. For nonlinear systems, the information matrices for each extreme point can be computed by using particle methods. Numerical examples show that the proposed technique can be successfully employed for experiment design in nonlinear systems.","PeriodicalId":13260,"journal":{"name":"IFAC Proceedings Volumes","volume":"74 1","pages":"1404-1409"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A graph/particle-based method for experiment design in nonlinear systems\",\"authors\":\"P. E. Valenzuela, J. Dahlin, C. Rojas, T. Schon\",\"doi\":\"10.3182/20140824-6-ZA-1003.00361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We propose an extended method for experiment design in nonlinear state space models. The proposed input design technique optimizes a scalar cost function of the information matrix, by computing the optimal stationary probability mass function (pmf) from which an input sequence is sampled. The feasible set of the stationary pmf is a polytope, allowing it to be expressed as a convex combination of its extreme points. The extreme points in the feasible set of pmf's can be computed using graph theory. Therefore, the final information matrix can be approximated as a convex combination of the information matrices associated with each extreme point. For nonlinear systems, the information matrices for each extreme point can be computed by using particle methods. Numerical examples show that the proposed technique can be successfully employed for experiment design in nonlinear systems.\",\"PeriodicalId\":13260,\"journal\":{\"name\":\"IFAC Proceedings Volumes\",\"volume\":\"74 1\",\"pages\":\"1404-1409\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IFAC Proceedings Volumes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3182/20140824-6-ZA-1003.00361\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC Proceedings Volumes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3182/20140824-6-ZA-1003.00361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

摘要提出了一种非线性状态空间模型实验设计的扩展方法。提出的输入设计技术通过计算最优平稳概率质量函数(pmf)来优化信息矩阵的标量代价函数,从该函数中采样输入序列。平稳pmf的可行集是一个多面体,允许它表示为其极值点的凸组合。利用图论可以求出pmf可行集中的极值点。因此,最终的信息矩阵可以近似为与每个极值点相关的信息矩阵的凸组合。对于非线性系统,每个极值点的信息矩阵可以用粒子法计算。数值算例表明,该方法可以成功地用于非线性系统的实验设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A graph/particle-based method for experiment design in nonlinear systems
Abstract We propose an extended method for experiment design in nonlinear state space models. The proposed input design technique optimizes a scalar cost function of the information matrix, by computing the optimal stationary probability mass function (pmf) from which an input sequence is sampled. The feasible set of the stationary pmf is a polytope, allowing it to be expressed as a convex combination of its extreme points. The extreme points in the feasible set of pmf's can be computed using graph theory. Therefore, the final information matrix can be approximated as a convex combination of the information matrices associated with each extreme point. For nonlinear systems, the information matrices for each extreme point can be computed by using particle methods. Numerical examples show that the proposed technique can be successfully employed for experiment design in nonlinear systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信