{"title":"流体二极管自主ICD选择标准,设计方法,和性能分析的多个完井设计:案例研究","authors":"Tejas Kalyani, G. Corona, Kevin Ross","doi":"10.2118/200255-ms","DOIUrl":null,"url":null,"abstract":"\n Inflow control device (ICD) technology helps in balancing the production across the entire interval, addressing some of the challenges associated with horizontal and deviated wells. Nevertheless, ICDs have limited capabilities in identifying and restricting unwanted fluids upon breakthrough. Autonomous ICD (AICD) technology functions similar to an ICD initially (i.e., balancing flux across the length of horizontal wells, effectively delaying breakthrough) but has the additional benefit of restricting the flow of unwanted fluids upon breakthrough. Multiple AICD case histories highlighting the benefit of the technology in mitigating well performance challenges and delivering improved recovery throughout the life of the well are discussed.\n AICD technology is fluid dependent, principally reacting to the properties of the fluid flowing through it and creating an additional pressure drop to restrict the production of unwanted fluids. The fluidic diode-type AICD has no moving parts and uses flow dynamic properties to distinguish between the fluids. It uses downhole fluid properties to accurately differentiate between oil, water, and gas; and changes the flow path autonomously to restrict unwanted fluids upon breakthrough; and uplifts oil production from the oil-saturated zones across the wellbore.\n Extensive testing has been completed to characterize and accurately predict the flow performance, which enables designing an AICD completion efficiently. Flow performance analysis of the various types of fluidic diode AICDs designed to address various well performance challenges [i.e., high gas-oil ratio (GOR) or high water production or both, increasing oil production] is discussed. The flow performance analysis has been derived using extensive and rigorous single-phase and multiphase flow-loop test programs, covering the wide range of oil properties.\n This paper will also highlight the screening criteria in selecting a candidate well for fluidic diode AICDs application. Furthermore, the paper will also discuss in detail a reservoir-focused well-centric completion design workflow for designing fluidic diode-type AICD completions for a candidate well. This collaborative workflow takes into account the various subsurface and well attributes to meet or exceed well key performance indicators (KPIs) over the life of the well.\n It can be observed from the results of various field installations and production data analysis that installing AICDs during the early life of wells or fields results in a higher ultimate recovery (UR) compared to installing it in brown or matured fields. However, the recovery with AICD in brown/matured fields can be higher than ICD or any other legacy openhole completion.\n The fluidic diode AICD design methodology and field installation results for AICD technology in different completion designs, such as openhole gravel pack, open hole, retrofit, artificial lift completion, and multilateral wells, are discussed as well. Additionally, it will also discuss the entire cycle—from flow-loop testing, candidate well selection, pre- and post-drilling AICD well modeling and design, calibration, and post-installation well performance reviews for an efficient and valid evaluation of the technology.","PeriodicalId":11113,"journal":{"name":"Day 1 Mon, March 21, 2022","volume":"74 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fluidic Diode Autonomous ICD Selection Criteria, Design Methodology, and Performance Analysis for Multiple Completion Designs: Case Studies\",\"authors\":\"Tejas Kalyani, G. Corona, Kevin Ross\",\"doi\":\"10.2118/200255-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Inflow control device (ICD) technology helps in balancing the production across the entire interval, addressing some of the challenges associated with horizontal and deviated wells. Nevertheless, ICDs have limited capabilities in identifying and restricting unwanted fluids upon breakthrough. Autonomous ICD (AICD) technology functions similar to an ICD initially (i.e., balancing flux across the length of horizontal wells, effectively delaying breakthrough) but has the additional benefit of restricting the flow of unwanted fluids upon breakthrough. Multiple AICD case histories highlighting the benefit of the technology in mitigating well performance challenges and delivering improved recovery throughout the life of the well are discussed.\\n AICD technology is fluid dependent, principally reacting to the properties of the fluid flowing through it and creating an additional pressure drop to restrict the production of unwanted fluids. The fluidic diode-type AICD has no moving parts and uses flow dynamic properties to distinguish between the fluids. It uses downhole fluid properties to accurately differentiate between oil, water, and gas; and changes the flow path autonomously to restrict unwanted fluids upon breakthrough; and uplifts oil production from the oil-saturated zones across the wellbore.\\n Extensive testing has been completed to characterize and accurately predict the flow performance, which enables designing an AICD completion efficiently. Flow performance analysis of the various types of fluidic diode AICDs designed to address various well performance challenges [i.e., high gas-oil ratio (GOR) or high water production or both, increasing oil production] is discussed. The flow performance analysis has been derived using extensive and rigorous single-phase and multiphase flow-loop test programs, covering the wide range of oil properties.\\n This paper will also highlight the screening criteria in selecting a candidate well for fluidic diode AICDs application. Furthermore, the paper will also discuss in detail a reservoir-focused well-centric completion design workflow for designing fluidic diode-type AICD completions for a candidate well. This collaborative workflow takes into account the various subsurface and well attributes to meet or exceed well key performance indicators (KPIs) over the life of the well.\\n It can be observed from the results of various field installations and production data analysis that installing AICDs during the early life of wells or fields results in a higher ultimate recovery (UR) compared to installing it in brown or matured fields. However, the recovery with AICD in brown/matured fields can be higher than ICD or any other legacy openhole completion.\\n The fluidic diode AICD design methodology and field installation results for AICD technology in different completion designs, such as openhole gravel pack, open hole, retrofit, artificial lift completion, and multilateral wells, are discussed as well. Additionally, it will also discuss the entire cycle—from flow-loop testing, candidate well selection, pre- and post-drilling AICD well modeling and design, calibration, and post-installation well performance reviews for an efficient and valid evaluation of the technology.\",\"PeriodicalId\":11113,\"journal\":{\"name\":\"Day 1 Mon, March 21, 2022\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Mon, March 21, 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/200255-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, March 21, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/200255-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fluidic Diode Autonomous ICD Selection Criteria, Design Methodology, and Performance Analysis for Multiple Completion Designs: Case Studies
Inflow control device (ICD) technology helps in balancing the production across the entire interval, addressing some of the challenges associated with horizontal and deviated wells. Nevertheless, ICDs have limited capabilities in identifying and restricting unwanted fluids upon breakthrough. Autonomous ICD (AICD) technology functions similar to an ICD initially (i.e., balancing flux across the length of horizontal wells, effectively delaying breakthrough) but has the additional benefit of restricting the flow of unwanted fluids upon breakthrough. Multiple AICD case histories highlighting the benefit of the technology in mitigating well performance challenges and delivering improved recovery throughout the life of the well are discussed.
AICD technology is fluid dependent, principally reacting to the properties of the fluid flowing through it and creating an additional pressure drop to restrict the production of unwanted fluids. The fluidic diode-type AICD has no moving parts and uses flow dynamic properties to distinguish between the fluids. It uses downhole fluid properties to accurately differentiate between oil, water, and gas; and changes the flow path autonomously to restrict unwanted fluids upon breakthrough; and uplifts oil production from the oil-saturated zones across the wellbore.
Extensive testing has been completed to characterize and accurately predict the flow performance, which enables designing an AICD completion efficiently. Flow performance analysis of the various types of fluidic diode AICDs designed to address various well performance challenges [i.e., high gas-oil ratio (GOR) or high water production or both, increasing oil production] is discussed. The flow performance analysis has been derived using extensive and rigorous single-phase and multiphase flow-loop test programs, covering the wide range of oil properties.
This paper will also highlight the screening criteria in selecting a candidate well for fluidic diode AICDs application. Furthermore, the paper will also discuss in detail a reservoir-focused well-centric completion design workflow for designing fluidic diode-type AICD completions for a candidate well. This collaborative workflow takes into account the various subsurface and well attributes to meet or exceed well key performance indicators (KPIs) over the life of the well.
It can be observed from the results of various field installations and production data analysis that installing AICDs during the early life of wells or fields results in a higher ultimate recovery (UR) compared to installing it in brown or matured fields. However, the recovery with AICD in brown/matured fields can be higher than ICD or any other legacy openhole completion.
The fluidic diode AICD design methodology and field installation results for AICD technology in different completion designs, such as openhole gravel pack, open hole, retrofit, artificial lift completion, and multilateral wells, are discussed as well. Additionally, it will also discuss the entire cycle—from flow-loop testing, candidate well selection, pre- and post-drilling AICD well modeling and design, calibration, and post-installation well performance reviews for an efficient and valid evaluation of the technology.