最大化子模b匹配的并行逼近算法

S. Ferdous, A. Pothen, Arif M. Khan, Ajay Panyala, M. Halappanavar
{"title":"最大化子模b匹配的并行逼近算法","authors":"S. Ferdous, A. Pothen, Arif M. Khan, Ajay Panyala, M. Halappanavar","doi":"10.1137/1.9781611976830.5","DOIUrl":null,"url":null,"abstract":"We design new serial and parallel approximation algorithms for computing a maximum weight $b$-matching in an edge-weighted graph with a submodular objective function. This problem is NP-hard; the new algorithms have approximation ratio $1/3$, and are relaxations of the Greedy algorithm that rely only on local information in the graph, making them parallelizable. We have designed and implemented Local Lazy Greedy algorithms for both serial and parallel computers. We have applied the approximate submodular $b$-matching algorithm to assign tasks to processors in the computation of Fock matrices in quantum chemistry on parallel computers. The assignment seeks to reduce the run time by balancing the computational load on the processors and bounding the number of messages that each processor sends. We show that the new assignment of tasks to processors provides a four fold speedup over the currently used assignment in the NWChemEx software on $8000$ processors on the Summit supercomputer at Oak Ridge National Lab.","PeriodicalId":93610,"journal":{"name":"Proceedings of the 2021 SIAM Conference on Applied and Computational Discrete Algorithms. SIAM Conference on Applied and Computational Discrete Algorithms (2021 : Online)","volume":"27 1","pages":"45-56"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Parallel Approximation Algorithm for Maximizing Submodular b-Matching\",\"authors\":\"S. Ferdous, A. Pothen, Arif M. Khan, Ajay Panyala, M. Halappanavar\",\"doi\":\"10.1137/1.9781611976830.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We design new serial and parallel approximation algorithms for computing a maximum weight $b$-matching in an edge-weighted graph with a submodular objective function. This problem is NP-hard; the new algorithms have approximation ratio $1/3$, and are relaxations of the Greedy algorithm that rely only on local information in the graph, making them parallelizable. We have designed and implemented Local Lazy Greedy algorithms for both serial and parallel computers. We have applied the approximate submodular $b$-matching algorithm to assign tasks to processors in the computation of Fock matrices in quantum chemistry on parallel computers. The assignment seeks to reduce the run time by balancing the computational load on the processors and bounding the number of messages that each processor sends. We show that the new assignment of tasks to processors provides a four fold speedup over the currently used assignment in the NWChemEx software on $8000$ processors on the Summit supercomputer at Oak Ridge National Lab.\",\"PeriodicalId\":93610,\"journal\":{\"name\":\"Proceedings of the 2021 SIAM Conference on Applied and Computational Discrete Algorithms. SIAM Conference on Applied and Computational Discrete Algorithms (2021 : Online)\",\"volume\":\"27 1\",\"pages\":\"45-56\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 SIAM Conference on Applied and Computational Discrete Algorithms. SIAM Conference on Applied and Computational Discrete Algorithms (2021 : Online)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9781611976830.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 SIAM Conference on Applied and Computational Discrete Algorithms. SIAM Conference on Applied and Computational Discrete Algorithms (2021 : Online)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611976830.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们设计了一种新的串行和并行逼近算法,用于计算具有次模目标函数的边加权图的最大权值$b$匹配。这个问题是np困难的;新算法具有近似比$1/3$,并且是贪心算法的松弛,仅依赖图中的局部信息,使其可并行化。我们设计并实现了串行和并行计算机的局部懒惰贪婪算法。在并行计算机上计算量子化学中的Fock矩阵时,我们应用近似子模$b$匹配算法将任务分配给处理器。分配旨在通过平衡处理器上的计算负载和限制每个处理器发送的消息数量来减少运行时间。我们表明,在橡树岭国家实验室的Summit超级计算机上,在$8000$处理器上的NWChemEx软件中,新的任务分配给处理器的速度比目前使用的分配提高了四倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Parallel Approximation Algorithm for Maximizing Submodular b-Matching
We design new serial and parallel approximation algorithms for computing a maximum weight $b$-matching in an edge-weighted graph with a submodular objective function. This problem is NP-hard; the new algorithms have approximation ratio $1/3$, and are relaxations of the Greedy algorithm that rely only on local information in the graph, making them parallelizable. We have designed and implemented Local Lazy Greedy algorithms for both serial and parallel computers. We have applied the approximate submodular $b$-matching algorithm to assign tasks to processors in the computation of Fock matrices in quantum chemistry on parallel computers. The assignment seeks to reduce the run time by balancing the computational load on the processors and bounding the number of messages that each processor sends. We show that the new assignment of tasks to processors provides a four fold speedup over the currently used assignment in the NWChemEx software on $8000$ processors on the Summit supercomputer at Oak Ridge National Lab.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信