关节突关节的高频加载

A. Valdevit, E. Noonan, H. Sidoti, Rebecca Chung, Arthur Ritter, T. Errico
{"title":"关节突关节的高频加载","authors":"A. Valdevit, E. Noonan, H. Sidoti, Rebecca Chung, Arthur Ritter, T. Errico","doi":"10.11159/jbeb.2015.002","DOIUrl":null,"url":null,"abstract":"With disc degeneration and height loss, facet joints may become susceptible to damage when exposed to elevated frequency loading. The investigators hypothesized that elevated frequencies alter normal mechanical response of facet joints which may be a mechanical predisposition for low back pain. Facet joints from six bovine L4-L5 vertebra were subjected to 520 loading cycles from -15N to -60N at 1Hz, 5Hz, 20Hz, 40Hz and 80Hz. Net deformation, strain, cumulative strain, and elastic stiffness were computed for each cycle, averaged across frequencies and subjected to non-linear exponential regression. Regression parameters were examined with a Tukey post-hoc test. Asymptotic limits of deformation were statistically significant (P<0.005) while elevated frequencies displayed significant decreases with respect to deformation change per cycle as compared to 1Hz. (P<0.005) Initial strain data indicated all frequency comparisons were statistically significant (P<0.01. The strain change per cycle indicated 1Hz loading was statistically equivalent to both 40Hz and 80Hz loading (P>0.05). The 5Hz frequency was statistically elevated compared to other frequencies (P<0.01). Initial stiffness indicated all frequency comparisons were statistically different (P<0.05). This study represents mechanical evidence for the predisposition of individuals exposed to high frequency loading toward increased incidence of load back pain.","PeriodicalId":92699,"journal":{"name":"Open access journal of biomedical engineering and biosciences","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Elevated Frequency Loading of Facet Joints\",\"authors\":\"A. Valdevit, E. Noonan, H. Sidoti, Rebecca Chung, Arthur Ritter, T. Errico\",\"doi\":\"10.11159/jbeb.2015.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With disc degeneration and height loss, facet joints may become susceptible to damage when exposed to elevated frequency loading. The investigators hypothesized that elevated frequencies alter normal mechanical response of facet joints which may be a mechanical predisposition for low back pain. Facet joints from six bovine L4-L5 vertebra were subjected to 520 loading cycles from -15N to -60N at 1Hz, 5Hz, 20Hz, 40Hz and 80Hz. Net deformation, strain, cumulative strain, and elastic stiffness were computed for each cycle, averaged across frequencies and subjected to non-linear exponential regression. Regression parameters were examined with a Tukey post-hoc test. Asymptotic limits of deformation were statistically significant (P<0.005) while elevated frequencies displayed significant decreases with respect to deformation change per cycle as compared to 1Hz. (P<0.005) Initial strain data indicated all frequency comparisons were statistically significant (P<0.01. The strain change per cycle indicated 1Hz loading was statistically equivalent to both 40Hz and 80Hz loading (P>0.05). The 5Hz frequency was statistically elevated compared to other frequencies (P<0.01). Initial stiffness indicated all frequency comparisons were statistically different (P<0.05). This study represents mechanical evidence for the predisposition of individuals exposed to high frequency loading toward increased incidence of load back pain.\",\"PeriodicalId\":92699,\"journal\":{\"name\":\"Open access journal of biomedical engineering and biosciences\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open access journal of biomedical engineering and biosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11159/jbeb.2015.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open access journal of biomedical engineering and biosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11159/jbeb.2015.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着椎间盘退变和高度下降,当暴露于高频率负荷时,关节突关节可能变得容易受到损伤。研究人员假设,频率升高会改变小关节的正常机械反应,这可能是腰痛的机械易感性。6个牛L4-L5椎体的小关节在-15N至-60N的1Hz、5Hz、20Hz、40Hz和80Hz下承受520次加载循环。计算每个周期的净变形、应变、累积应变和弹性刚度,在频率上取平均值,并进行非线性指数回归。回归参数用Tukey事后检验检验。变形的渐近极限有统计学意义(P0.05)。5Hz频率与其他频率比较,差异有统计学意义(P<0.01)。初始刚度表明各频率比较有统计学差异(P<0.05)。本研究为暴露于高频率负荷下的个体易患负荷性背痛提供了力学证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Elevated Frequency Loading of Facet Joints
With disc degeneration and height loss, facet joints may become susceptible to damage when exposed to elevated frequency loading. The investigators hypothesized that elevated frequencies alter normal mechanical response of facet joints which may be a mechanical predisposition for low back pain. Facet joints from six bovine L4-L5 vertebra were subjected to 520 loading cycles from -15N to -60N at 1Hz, 5Hz, 20Hz, 40Hz and 80Hz. Net deformation, strain, cumulative strain, and elastic stiffness were computed for each cycle, averaged across frequencies and subjected to non-linear exponential regression. Regression parameters were examined with a Tukey post-hoc test. Asymptotic limits of deformation were statistically significant (P<0.005) while elevated frequencies displayed significant decreases with respect to deformation change per cycle as compared to 1Hz. (P<0.005) Initial strain data indicated all frequency comparisons were statistically significant (P<0.01. The strain change per cycle indicated 1Hz loading was statistically equivalent to both 40Hz and 80Hz loading (P>0.05). The 5Hz frequency was statistically elevated compared to other frequencies (P<0.01). Initial stiffness indicated all frequency comparisons were statistically different (P<0.05). This study represents mechanical evidence for the predisposition of individuals exposed to high frequency loading toward increased incidence of load back pain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信