{"title":"俱乐部静止反射和特殊的Aronszajn树性质","authors":"Omer Ben-Neria, Thomas Gilton","doi":"10.4153/s0008414x22000207","DOIUrl":null,"url":null,"abstract":"Abstract We prove that it is consistent that Club Stationary Reflection and the Special Aronszajn Tree Property simultaneously hold on \n$\\omega _2$\n , thereby contributing to the study of the tension between compactness and incompactness in set theory. The poset which produces the final model follows the collapse of an ineffable cardinal first with an iteration of club adding (with anticipation) and second with an iteration specializing Aronszajn trees. In the first part of the paper, we prove a general theorem about specializing Aronszajn trees on \n$\\omega _2$\n after forcing with what we call \n$\\mathcal {F}$\n -Strongly Proper posets, where \n$\\mathcal {F}$\n is either the weakly compact filter or the filter dual to the ineffability ideal. This type of poset, of which the Levy collapse is a degenerate example, uses systems of exact residue functions to create many strongly generic conditions. We prove a new result about stationary set preservation by quotients of this kind of poset; as a corollary, we show that the original Laver–Shelah model, which starts from a weakly compact cardinal, satisfies a strong stationary reflection principle, although it fails to satisfy the full Club Stationary Reflection. In the second part, we show that the composition of collapsing and club adding (with anticipation) is an \n$\\mathcal {F}$\n -Strongly Proper poset. After proving a new result about Aronszajn tree preservation, we show how to obtain the final model.","PeriodicalId":55284,"journal":{"name":"Canadian Journal of Mathematics-Journal Canadien De Mathematiques","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Club stationary reflection and the special Aronszajn tree property\",\"authors\":\"Omer Ben-Neria, Thomas Gilton\",\"doi\":\"10.4153/s0008414x22000207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We prove that it is consistent that Club Stationary Reflection and the Special Aronszajn Tree Property simultaneously hold on \\n$\\\\omega _2$\\n , thereby contributing to the study of the tension between compactness and incompactness in set theory. The poset which produces the final model follows the collapse of an ineffable cardinal first with an iteration of club adding (with anticipation) and second with an iteration specializing Aronszajn trees. In the first part of the paper, we prove a general theorem about specializing Aronszajn trees on \\n$\\\\omega _2$\\n after forcing with what we call \\n$\\\\mathcal {F}$\\n -Strongly Proper posets, where \\n$\\\\mathcal {F}$\\n is either the weakly compact filter or the filter dual to the ineffability ideal. This type of poset, of which the Levy collapse is a degenerate example, uses systems of exact residue functions to create many strongly generic conditions. We prove a new result about stationary set preservation by quotients of this kind of poset; as a corollary, we show that the original Laver–Shelah model, which starts from a weakly compact cardinal, satisfies a strong stationary reflection principle, although it fails to satisfy the full Club Stationary Reflection. In the second part, we show that the composition of collapsing and club adding (with anticipation) is an \\n$\\\\mathcal {F}$\\n -Strongly Proper poset. After proving a new result about Aronszajn tree preservation, we show how to obtain the final model.\",\"PeriodicalId\":55284,\"journal\":{\"name\":\"Canadian Journal of Mathematics-Journal Canadien De Mathematiques\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Mathematics-Journal Canadien De Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4153/s0008414x22000207\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Mathematics-Journal Canadien De Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4153/s0008414x22000207","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Club stationary reflection and the special Aronszajn tree property
Abstract We prove that it is consistent that Club Stationary Reflection and the Special Aronszajn Tree Property simultaneously hold on
$\omega _2$
, thereby contributing to the study of the tension between compactness and incompactness in set theory. The poset which produces the final model follows the collapse of an ineffable cardinal first with an iteration of club adding (with anticipation) and second with an iteration specializing Aronszajn trees. In the first part of the paper, we prove a general theorem about specializing Aronszajn trees on
$\omega _2$
after forcing with what we call
$\mathcal {F}$
-Strongly Proper posets, where
$\mathcal {F}$
is either the weakly compact filter or the filter dual to the ineffability ideal. This type of poset, of which the Levy collapse is a degenerate example, uses systems of exact residue functions to create many strongly generic conditions. We prove a new result about stationary set preservation by quotients of this kind of poset; as a corollary, we show that the original Laver–Shelah model, which starts from a weakly compact cardinal, satisfies a strong stationary reflection principle, although it fails to satisfy the full Club Stationary Reflection. In the second part, we show that the composition of collapsing and club adding (with anticipation) is an
$\mathcal {F}$
-Strongly Proper poset. After proving a new result about Aronszajn tree preservation, we show how to obtain the final model.
期刊介绍:
The Canadian Journal of Mathematics (CJM) publishes original, high-quality research papers in all branches of mathematics. The Journal is a flagship publication of the Canadian Mathematical Society and has been published continuously since 1949. New research papers are published continuously online and collated into print issues six times each year.
To be submitted to the Journal, papers should be at least 18 pages long and may be written in English or in French. Shorter papers should be submitted to the Canadian Mathematical Bulletin.
Le Journal canadien de mathématiques (JCM) publie des articles de recherche innovants de grande qualité dans toutes les branches des mathématiques. Publication phare de la Société mathématique du Canada, il est publié en continu depuis 1949. En ligne, la revue propose constamment de nouveaux articles de recherche, puis les réunit dans des numéros imprimés six fois par année.
Les textes présentés au JCM doivent compter au moins 18 pages et être rédigés en anglais ou en français. C’est le Bulletin canadien de mathématiques qui reçoit les articles plus courts.