俱乐部静止反射和特殊的Aronszajn树性质

IF 0.6 3区 数学 Q3 MATHEMATICS
Omer Ben-Neria, Thomas Gilton
{"title":"俱乐部静止反射和特殊的Aronszajn树性质","authors":"Omer Ben-Neria, Thomas Gilton","doi":"10.4153/s0008414x22000207","DOIUrl":null,"url":null,"abstract":"Abstract We prove that it is consistent that Club Stationary Reflection and the Special Aronszajn Tree Property simultaneously hold on \n$\\omega _2$\n , thereby contributing to the study of the tension between compactness and incompactness in set theory. The poset which produces the final model follows the collapse of an ineffable cardinal first with an iteration of club adding (with anticipation) and second with an iteration specializing Aronszajn trees. In the first part of the paper, we prove a general theorem about specializing Aronszajn trees on \n$\\omega _2$\n after forcing with what we call \n$\\mathcal {F}$\n -Strongly Proper posets, where \n$\\mathcal {F}$\n is either the weakly compact filter or the filter dual to the ineffability ideal. This type of poset, of which the Levy collapse is a degenerate example, uses systems of exact residue functions to create many strongly generic conditions. We prove a new result about stationary set preservation by quotients of this kind of poset; as a corollary, we show that the original Laver–Shelah model, which starts from a weakly compact cardinal, satisfies a strong stationary reflection principle, although it fails to satisfy the full Club Stationary Reflection. In the second part, we show that the composition of collapsing and club adding (with anticipation) is an \n$\\mathcal {F}$\n -Strongly Proper poset. After proving a new result about Aronszajn tree preservation, we show how to obtain the final model.","PeriodicalId":55284,"journal":{"name":"Canadian Journal of Mathematics-Journal Canadien De Mathematiques","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Club stationary reflection and the special Aronszajn tree property\",\"authors\":\"Omer Ben-Neria, Thomas Gilton\",\"doi\":\"10.4153/s0008414x22000207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We prove that it is consistent that Club Stationary Reflection and the Special Aronszajn Tree Property simultaneously hold on \\n$\\\\omega _2$\\n , thereby contributing to the study of the tension between compactness and incompactness in set theory. The poset which produces the final model follows the collapse of an ineffable cardinal first with an iteration of club adding (with anticipation) and second with an iteration specializing Aronszajn trees. In the first part of the paper, we prove a general theorem about specializing Aronszajn trees on \\n$\\\\omega _2$\\n after forcing with what we call \\n$\\\\mathcal {F}$\\n -Strongly Proper posets, where \\n$\\\\mathcal {F}$\\n is either the weakly compact filter or the filter dual to the ineffability ideal. This type of poset, of which the Levy collapse is a degenerate example, uses systems of exact residue functions to create many strongly generic conditions. We prove a new result about stationary set preservation by quotients of this kind of poset; as a corollary, we show that the original Laver–Shelah model, which starts from a weakly compact cardinal, satisfies a strong stationary reflection principle, although it fails to satisfy the full Club Stationary Reflection. In the second part, we show that the composition of collapsing and club adding (with anticipation) is an \\n$\\\\mathcal {F}$\\n -Strongly Proper poset. After proving a new result about Aronszajn tree preservation, we show how to obtain the final model.\",\"PeriodicalId\":55284,\"journal\":{\"name\":\"Canadian Journal of Mathematics-Journal Canadien De Mathematiques\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Mathematics-Journal Canadien De Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4153/s0008414x22000207\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Mathematics-Journal Canadien De Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4153/s0008414x22000207","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

摘要证明了Club平稳反射与特殊的Aronszajn树性质同时存在于$\ ω _2$上是一致的,从而有助于研究集合论中紧与不紧之间的张力。产生最终模型的poset遵循不可言喻的基数的崩溃,首先是俱乐部添加的迭代(带有预期),其次是专门针对Aronszajn树的迭代。在本文的第一部分中,我们用$\mathcal {F}$ -强固有偏序集证明了$\ ω _2$上Aronszajn树专门化的一般定理,其中$\mathcal {F}$是不可传递理想的弱紧滤波器或对偶滤波器。这类偏序集,其中Levy坍缩是一个退化的例子,它使用精确剩余函数系统来创建许多强一般条件。证明了这类偏序集的商保持平稳集的一个新结果;作为推论,我们证明了从弱紧基数出发的原始Laver-Shelah模型满足强平稳反射原则,尽管它不能满足完全俱乐部平稳反射原则。在第二部分中,我们证明了坍缩和俱乐部相加(带预期)的组合是一个$\mathcal {F}$ -强适当序集。在证明了关于Aronszajn树保存的一个新结果后,给出了如何得到最终模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Club stationary reflection and the special Aronszajn tree property
Abstract We prove that it is consistent that Club Stationary Reflection and the Special Aronszajn Tree Property simultaneously hold on $\omega _2$ , thereby contributing to the study of the tension between compactness and incompactness in set theory. The poset which produces the final model follows the collapse of an ineffable cardinal first with an iteration of club adding (with anticipation) and second with an iteration specializing Aronszajn trees. In the first part of the paper, we prove a general theorem about specializing Aronszajn trees on $\omega _2$ after forcing with what we call $\mathcal {F}$ -Strongly Proper posets, where $\mathcal {F}$ is either the weakly compact filter or the filter dual to the ineffability ideal. This type of poset, of which the Levy collapse is a degenerate example, uses systems of exact residue functions to create many strongly generic conditions. We prove a new result about stationary set preservation by quotients of this kind of poset; as a corollary, we show that the original Laver–Shelah model, which starts from a weakly compact cardinal, satisfies a strong stationary reflection principle, although it fails to satisfy the full Club Stationary Reflection. In the second part, we show that the composition of collapsing and club adding (with anticipation) is an $\mathcal {F}$ -Strongly Proper poset. After proving a new result about Aronszajn tree preservation, we show how to obtain the final model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
58
审稿时长
4.5 months
期刊介绍: The Canadian Journal of Mathematics (CJM) publishes original, high-quality research papers in all branches of mathematics. The Journal is a flagship publication of the Canadian Mathematical Society and has been published continuously since 1949. New research papers are published continuously online and collated into print issues six times each year. To be submitted to the Journal, papers should be at least 18 pages long and may be written in English or in French. Shorter papers should be submitted to the Canadian Mathematical Bulletin. Le Journal canadien de mathématiques (JCM) publie des articles de recherche innovants de grande qualité dans toutes les branches des mathématiques. Publication phare de la Société mathématique du Canada, il est publié en continu depuis 1949. En ligne, la revue propose constamment de nouveaux articles de recherche, puis les réunit dans des numéros imprimés six fois par année. Les textes présentés au JCM doivent compter au moins 18 pages et être rédigés en anglais ou en français. C’est le Bulletin canadien de mathématiques qui reçoit les articles plus courts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信