基于高效卷积算子的自适应多滤波器跟踪器

Q3 Engineering
Liu Guoyou, Zhang Fengxv, Jiao Zhian
{"title":"基于高效卷积算子的自适应多滤波器跟踪器","authors":"Liu Guoyou, Zhang Fengxv, Jiao Zhian","doi":"10.12086/OEE.2020.190510","DOIUrl":null,"url":null,"abstract":"With the problem of difficulty that a single filter to adapt to various complex changes in the tracking process, an adaptive multi-filter target tracking algorithm based on the efficient convolution operators for tracking is proposed. Spatial-temporal regularized filter, the consistency check filter and the correlation filter in the efficient convolution operator tracker, convolve with target features respectively, which obtains three detection scores. The training method of spatial-temporal regularized filter is to introduce temporal regularization into loss function. The consistency check filter is a filter that uses current filter to track the target of previous several frames and updates only when the error of forward and backward position is less than the threshold. Target position is estimated by the best filter detection score with the peak-to-side ratio is maximum. The improved algorithm is tested with the OTB-2015 dataset and UAV123 dataset. The experimental results show that the proposed algorithm can better adapt to the complex environment in tracking process, which has high precision and robustness.","PeriodicalId":39552,"journal":{"name":"光电工程","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive multi-filter tracker based on efficient convolution operator\",\"authors\":\"Liu Guoyou, Zhang Fengxv, Jiao Zhian\",\"doi\":\"10.12086/OEE.2020.190510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the problem of difficulty that a single filter to adapt to various complex changes in the tracking process, an adaptive multi-filter target tracking algorithm based on the efficient convolution operators for tracking is proposed. Spatial-temporal regularized filter, the consistency check filter and the correlation filter in the efficient convolution operator tracker, convolve with target features respectively, which obtains three detection scores. The training method of spatial-temporal regularized filter is to introduce temporal regularization into loss function. The consistency check filter is a filter that uses current filter to track the target of previous several frames and updates only when the error of forward and backward position is less than the threshold. Target position is estimated by the best filter detection score with the peak-to-side ratio is maximum. The improved algorithm is tested with the OTB-2015 dataset and UAV123 dataset. The experimental results show that the proposed algorithm can better adapt to the complex environment in tracking process, which has high precision and robustness.\",\"PeriodicalId\":39552,\"journal\":{\"name\":\"光电工程\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"光电工程\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.12086/OEE.2020.190510\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"光电工程","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12086/OEE.2020.190510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

针对单滤波器难以适应跟踪过程中各种复杂变化的问题,提出了一种基于高效卷积算子的自适应多滤波器目标跟踪算法。在高效卷积算子跟踪器中对时空正则化滤波器、一致性检查滤波器和相关滤波器分别与目标特征进行卷积,得到三个检测分数。时空正则化滤波器的训练方法是在损失函数中引入时间正则化。一致性检查滤波器是一种利用当前滤波器跟踪前几帧的目标,只有当前后位置误差小于阈值时才更新的滤波器。以峰侧比最大的最佳滤波器检测分数估计目标位置。用OTB-2015数据集和UAV123数据集对改进算法进行了测试。实验结果表明,该算法能较好地适应跟踪过程中的复杂环境,具有较高的精度和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive multi-filter tracker based on efficient convolution operator
With the problem of difficulty that a single filter to adapt to various complex changes in the tracking process, an adaptive multi-filter target tracking algorithm based on the efficient convolution operators for tracking is proposed. Spatial-temporal regularized filter, the consistency check filter and the correlation filter in the efficient convolution operator tracker, convolve with target features respectively, which obtains three detection scores. The training method of spatial-temporal regularized filter is to introduce temporal regularization into loss function. The consistency check filter is a filter that uses current filter to track the target of previous several frames and updates only when the error of forward and backward position is less than the threshold. Target position is estimated by the best filter detection score with the peak-to-side ratio is maximum. The improved algorithm is tested with the OTB-2015 dataset and UAV123 dataset. The experimental results show that the proposed algorithm can better adapt to the complex environment in tracking process, which has high precision and robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
光电工程
光电工程 Engineering-Electrical and Electronic Engineering
CiteScore
2.00
自引率
0.00%
发文量
6622
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信