J. Craft, Muhammad Waqas Shabbir, D. Englund, R. Osgood, M. N. Leuenberger
{"title":"用银纳米片修饰石墨烯的光谱选择性热发射","authors":"J. Craft, Muhammad Waqas Shabbir, D. Englund, R. Osgood, M. N. Leuenberger","doi":"10.1117/12.2692387","DOIUrl":null,"url":null,"abstract":"We show that graphene decorated with Ag nanodisks realizes spectrally selective thermal emission by means of acoustic graphene plasmons (AGPs) localized between graphene and the Ag nanodisks inside a dielectric material. Our finite-difference time domain (FDTD) calculations show that the spectrally selective thermal radiation emission can be tuned by means of a gate voltage into two different wavelength regimes, namely the atmospherically opaque regime between λ = 5 μm and λ = 8 μm or the atmospherically transparent regime between λ = 8 μm and λ = 12 μm. This allows for electrical switching between a radiative heat trapping mode for the former regime and a radiative cooling mode for the latter regime.","PeriodicalId":13820,"journal":{"name":"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)","volume":"68 1","pages":"126480K - 126480K-9"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectrally selective thermal emission from graphene decorated with silver nanodisks\",\"authors\":\"J. Craft, Muhammad Waqas Shabbir, D. Englund, R. Osgood, M. N. Leuenberger\",\"doi\":\"10.1117/12.2692387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that graphene decorated with Ag nanodisks realizes spectrally selective thermal emission by means of acoustic graphene plasmons (AGPs) localized between graphene and the Ag nanodisks inside a dielectric material. Our finite-difference time domain (FDTD) calculations show that the spectrally selective thermal radiation emission can be tuned by means of a gate voltage into two different wavelength regimes, namely the atmospherically opaque regime between λ = 5 μm and λ = 8 μm or the atmospherically transparent regime between λ = 8 μm and λ = 12 μm. This allows for electrical switching between a radiative heat trapping mode for the former regime and a radiative cooling mode for the latter regime.\",\"PeriodicalId\":13820,\"journal\":{\"name\":\"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)\",\"volume\":\"68 1\",\"pages\":\"126480K - 126480K-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2692387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2692387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spectrally selective thermal emission from graphene decorated with silver nanodisks
We show that graphene decorated with Ag nanodisks realizes spectrally selective thermal emission by means of acoustic graphene plasmons (AGPs) localized between graphene and the Ag nanodisks inside a dielectric material. Our finite-difference time domain (FDTD) calculations show that the spectrally selective thermal radiation emission can be tuned by means of a gate voltage into two different wavelength regimes, namely the atmospherically opaque regime between λ = 5 μm and λ = 8 μm or the atmospherically transparent regime between λ = 8 μm and λ = 12 μm. This allows for electrical switching between a radiative heat trapping mode for the former regime and a radiative cooling mode for the latter regime.