基于峰值的自适应滤波器

Q3 Arts and Humanities
Xiaoxiang Gong, J. Harris
{"title":"基于峰值的自适应滤波器","authors":"Xiaoxiang Gong, J. Harris","doi":"10.1109/ICECS.2004.1399683","DOIUrl":null,"url":null,"abstract":"We propose a spike-based adaptive filter with supervised learning. Unlike standard adaptive filters, here the optimal MSE solution is not unique for the spike-based system identification problem. The simplex method is introduced to select one of the many possible optimal solutions. In simulations, an LMS-based learning procedure is designed and, for faster convergence, we introduce a credit assignment method which penalizes all the weights contributing to the current error signal. Finally, we discuss issues regarding the implementation of the spike-based adaptive filter in an analog VLSI circuit.","PeriodicalId":38467,"journal":{"name":"Giornale di Storia Costituzionale","volume":"10 1","pages":"322-325"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A spike-based adaptive filter\",\"authors\":\"Xiaoxiang Gong, J. Harris\",\"doi\":\"10.1109/ICECS.2004.1399683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a spike-based adaptive filter with supervised learning. Unlike standard adaptive filters, here the optimal MSE solution is not unique for the spike-based system identification problem. The simplex method is introduced to select one of the many possible optimal solutions. In simulations, an LMS-based learning procedure is designed and, for faster convergence, we introduce a credit assignment method which penalizes all the weights contributing to the current error signal. Finally, we discuss issues regarding the implementation of the spike-based adaptive filter in an analog VLSI circuit.\",\"PeriodicalId\":38467,\"journal\":{\"name\":\"Giornale di Storia Costituzionale\",\"volume\":\"10 1\",\"pages\":\"322-325\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Giornale di Storia Costituzionale\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECS.2004.1399683\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Giornale di Storia Costituzionale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECS.2004.1399683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 2

摘要

我们提出了一种基于峰值的监督学习自适应滤波器。与标准的自适应滤波器不同,这里的最佳MSE解决方案并不是基于峰值的系统识别问题的唯一解决方案。引入单纯形法从众多可能的最优解中选择一个。在仿真中,我们设计了一个基于lms的学习过程,为了更快的收敛,我们引入了一种信用分配方法,该方法会惩罚导致当前误差信号的所有权重。最后,我们讨论了在模拟VLSI电路中实现基于尖峰的自适应滤波器的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A spike-based adaptive filter
We propose a spike-based adaptive filter with supervised learning. Unlike standard adaptive filters, here the optimal MSE solution is not unique for the spike-based system identification problem. The simplex method is introduced to select one of the many possible optimal solutions. In simulations, an LMS-based learning procedure is designed and, for faster convergence, we introduce a credit assignment method which penalizes all the weights contributing to the current error signal. Finally, we discuss issues regarding the implementation of the spike-based adaptive filter in an analog VLSI circuit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Giornale di Storia Costituzionale
Giornale di Storia Costituzionale Arts and Humanities-History
CiteScore
0.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信