高能物理中的分布式云计算

R. Sobie
{"title":"高能物理中的分布式云计算","authors":"R. Sobie","doi":"10.1145/2627566.2627578","DOIUrl":null,"url":null,"abstract":"Cloud computing is increasingly being used for running high energy physics (HEP) applications. We review the motivation for using clouds in HEP and describe how they are gradually being integrated into our systems. In particular, we highlight our use of a distributed cloud computing system that integrates both private and public IaaS clouds into a unified infrastructure. We describe our experience using the distributed cloud and our plans to make the system context-aware in order to scale to larger workloads and run data-intensive HEP applications.","PeriodicalId":91161,"journal":{"name":"Proceedings. Data Compression Conference","volume":"41 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Distributed cloud computing in high energy physics\",\"authors\":\"R. Sobie\",\"doi\":\"10.1145/2627566.2627578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cloud computing is increasingly being used for running high energy physics (HEP) applications. We review the motivation for using clouds in HEP and describe how they are gradually being integrated into our systems. In particular, we highlight our use of a distributed cloud computing system that integrates both private and public IaaS clouds into a unified infrastructure. We describe our experience using the distributed cloud and our plans to make the system context-aware in order to scale to larger workloads and run data-intensive HEP applications.\",\"PeriodicalId\":91161,\"journal\":{\"name\":\"Proceedings. Data Compression Conference\",\"volume\":\"41 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Data Compression Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2627566.2627578\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2627566.2627578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

云计算越来越多地被用于运行高能物理(HEP)应用程序。我们回顾了在HEP中使用云的动机,并描述了它们如何逐渐集成到我们的系统中。我们特别强调了分布式云计算系统的使用,该系统将私有和公共IaaS云集成到统一的基础设施中。我们描述了我们使用分布式云的经验,以及我们使系统具有上下文感知的计划,以便扩展到更大的工作负载并运行数据密集型HEP应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed cloud computing in high energy physics
Cloud computing is increasingly being used for running high energy physics (HEP) applications. We review the motivation for using clouds in HEP and describe how they are gradually being integrated into our systems. In particular, we highlight our use of a distributed cloud computing system that integrates both private and public IaaS clouds into a unified infrastructure. We describe our experience using the distributed cloud and our plans to make the system context-aware in order to scale to larger workloads and run data-intensive HEP applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信