黎曼函数的泛函独立性的推广

Pub Date : 2020-06-12 DOI:10.3336/gm.55.1.05
A. Laurinčikas
{"title":"黎曼函数的泛函独立性的推广","authors":"A. Laurinčikas","doi":"10.3336/gm.55.1.05","DOIUrl":null,"url":null,"abstract":"In 1972, Voronin proved the functional independence of the Riemann zeta-function ζ(s), i. e., if the functions Φj are continuous in C and Φ0(ζ(s), . . . , ζ(N−1)(s)) + · · ·+ sΦn(ζ(s), . . . , ζ(N−1)(s)) ≡ 0, then Φj ≡ 0 for j = 0, . . . , n. The problem goes back to Hilbert who obtained the algebraic-differential independence of ζ(s). In the paper, the functional independence of compositions F (ζ(s)) for some classes of operators F in the space of analytic functions is proved. For example, as a particular case, the functional independence of the function cos ζ(s) follows.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Extension of the functional independence of the Riemann zeta-function\",\"authors\":\"A. Laurinčikas\",\"doi\":\"10.3336/gm.55.1.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 1972, Voronin proved the functional independence of the Riemann zeta-function ζ(s), i. e., if the functions Φj are continuous in C and Φ0(ζ(s), . . . , ζ(N−1)(s)) + · · ·+ sΦn(ζ(s), . . . , ζ(N−1)(s)) ≡ 0, then Φj ≡ 0 for j = 0, . . . , n. The problem goes back to Hilbert who obtained the algebraic-differential independence of ζ(s). In the paper, the functional independence of compositions F (ζ(s)) for some classes of operators F in the space of analytic functions is proved. For example, as a particular case, the functional independence of the function cos ζ(s) follows.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3336/gm.55.1.05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3336/gm.55.1.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

1972年,Voronin证明了黎曼ζ函数ζ(s)的泛函独立性,即,如果函数Φj在C和Φ0(ζ(s)中连续,…, ζ(N−1)(s)) +···+ sΦn(ζ(s),…, ζ(N−1)(s))≡0,那么Φj≡0对于j = 0,…这个问题可以追溯到希尔伯特,他得到了ζ(s)的代数微分无关性。本文证明了解析函数空间中若干类算子F的组合F (ζ(s))的泛函无关性。例如,作为一个特例,函数cos ζ(s)的函数独立性如下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Extension of the functional independence of the Riemann zeta-function
In 1972, Voronin proved the functional independence of the Riemann zeta-function ζ(s), i. e., if the functions Φj are continuous in C and Φ0(ζ(s), . . . , ζ(N−1)(s)) + · · ·+ sΦn(ζ(s), . . . , ζ(N−1)(s)) ≡ 0, then Φj ≡ 0 for j = 0, . . . , n. The problem goes back to Hilbert who obtained the algebraic-differential independence of ζ(s). In the paper, the functional independence of compositions F (ζ(s)) for some classes of operators F in the space of analytic functions is proved. For example, as a particular case, the functional independence of the function cos ζ(s) follows.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信