高斯随机场中的冗余

Pub Date : 2020-03-13 DOI:10.1051/PS/2020010
Valentin De Bortoli, A. Desolneux, B. Galerne, Arthur Leclaire
{"title":"高斯随机场中的冗余","authors":"Valentin De Bortoli, A. Desolneux, B. Galerne, Arthur Leclaire","doi":"10.1051/PS/2020010","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a notion of spatial redundancy in Gaussian random fields. This study is motivated by applications of the a contrario method in image processing. We define similarity functions on local windows in random fields over discrete or continuous domains. We derive explicit Gaussian asymptotics for the distribution of similarity functions when computed on Gaussian random fields. Moreover, for the special case of the squared L2 norm, we give non-asymptotic expressions in both discrete and continuous periodic settings. Finally, we present fast and accurate approximations of these non-asymptotic expressions using moment methods and matrix projections.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Redundancy in Gaussian random fields\",\"authors\":\"Valentin De Bortoli, A. Desolneux, B. Galerne, Arthur Leclaire\",\"doi\":\"10.1051/PS/2020010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a notion of spatial redundancy in Gaussian random fields. This study is motivated by applications of the a contrario method in image processing. We define similarity functions on local windows in random fields over discrete or continuous domains. We derive explicit Gaussian asymptotics for the distribution of similarity functions when computed on Gaussian random fields. Moreover, for the special case of the squared L2 norm, we give non-asymptotic expressions in both discrete and continuous periodic settings. Finally, we present fast and accurate approximations of these non-asymptotic expressions using moment methods and matrix projections.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1051/PS/2020010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/PS/2020010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文在高斯随机场中引入了空间冗余的概念。本文的研究是基于反相方法在图像处理中的应用。我们定义了离散域和连续域上随机场局部窗口上的相似函数。我们导出了在高斯随机场上计算相似函数分布的显式高斯渐近性。此外,对于L2范数的平方的特殊情况,我们给出了离散和连续周期设置下的非渐近表达式。最后,我们用矩法和矩阵投影给出了这些非渐近表达式的快速和精确的逼近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Redundancy in Gaussian random fields
In this paper, we introduce a notion of spatial redundancy in Gaussian random fields. This study is motivated by applications of the a contrario method in image processing. We define similarity functions on local windows in random fields over discrete or continuous domains. We derive explicit Gaussian asymptotics for the distribution of similarity functions when computed on Gaussian random fields. Moreover, for the special case of the squared L2 norm, we give non-asymptotic expressions in both discrete and continuous periodic settings. Finally, we present fast and accurate approximations of these non-asymptotic expressions using moment methods and matrix projections.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信