约束系统的范畴是笛卡尔封闭的

V. Saraswat
{"title":"约束系统的范畴是笛卡尔封闭的","authors":"V. Saraswat","doi":"10.1109/LICS.1992.185546","DOIUrl":null,"url":null,"abstract":"A general definition of constraint systems utilizing Gentzen-style sequents is given. Constraint systems can be regarded as enriching the propositional Scott information systems with minimal first-order structure: the notion of variables, existential quantification, and substitution. Approximate maps that are generic in all but finitely many variables are taken as morphisms. It is shown that the resulting structure forms a category (called ConstSys). Furthermore, the structure of Scott information systems lifts smoothly to the first-order setting. In particular, it is shown that the category is Cartesian-closed, and other usual functors over Scott information systems (lifting, sums, Smyth power-domain) are also definable and recursive domain equations involving these functors can be solved.<<ETX>>","PeriodicalId":6412,"journal":{"name":"[1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1992-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":"{\"title\":\"The category of constraint systems is Cartesian-closed\",\"authors\":\"V. Saraswat\",\"doi\":\"10.1109/LICS.1992.185546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A general definition of constraint systems utilizing Gentzen-style sequents is given. Constraint systems can be regarded as enriching the propositional Scott information systems with minimal first-order structure: the notion of variables, existential quantification, and substitution. Approximate maps that are generic in all but finitely many variables are taken as morphisms. It is shown that the resulting structure forms a category (called ConstSys). Furthermore, the structure of Scott information systems lifts smoothly to the first-order setting. In particular, it is shown that the category is Cartesian-closed, and other usual functors over Scott information systems (lifting, sums, Smyth power-domain) are also definable and recursive domain equations involving these functors can be solved.<<ETX>>\",\"PeriodicalId\":6412,\"journal\":{\"name\":\"[1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"66\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.1992.185546\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.1992.185546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 66

摘要

给出了根岑式序列约束系统的一般定义。约束系统可以被看作是丰富命题斯科特信息系统的最小一阶结构:变量的概念,存在量化和替代。近似映射在除有限多个变量之外的所有变量中都是泛型的,被视为态射。结果表明,该结构形成了一个类别(称为ConstSys)。此外,司各特信息系统的结构平稳地提升到一阶设置。特别地,证明了该范畴是笛卡尔闭的,并且Scott信息系统上的其他常用函子(提升、和、Smyth幂域)也是可定义的,并且可以求解涉及这些函子的递归域方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The category of constraint systems is Cartesian-closed
A general definition of constraint systems utilizing Gentzen-style sequents is given. Constraint systems can be regarded as enriching the propositional Scott information systems with minimal first-order structure: the notion of variables, existential quantification, and substitution. Approximate maps that are generic in all but finitely many variables are taken as morphisms. It is shown that the resulting structure forms a category (called ConstSys). Furthermore, the structure of Scott information systems lifts smoothly to the first-order setting. In particular, it is shown that the category is Cartesian-closed, and other usual functors over Scott information systems (lifting, sums, Smyth power-domain) are also definable and recursive domain equations involving these functors can be solved.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信