线性规划理论中对偶定理的推广

M. Ohtsuka
{"title":"线性规划理论中对偶定理的推广","authors":"M. Ohtsuka","doi":"10.32917/HMJ/1206139186","DOIUrl":null,"url":null,"abstract":"The well-known duality theorem in the theory of linear programming asserts that, if Jίφ0 and M<oo, then Jί'Φtf and M=M'. We shall generalize this theorem in the present paper. Let X and Y be compact Hausdorff spaces and Φ(x, γ) a universally measurable function on XxY which is bounded below. Let g(χ) be a universally measurable function on X which is bounded below and /(γ) a universally measurable function on Y which is bounded above. Under these general circumstances let Jί be the class of all non-negative Radon measures μ on Y satisfying","PeriodicalId":17080,"journal":{"name":"Journal of science of the Hiroshima University Ser. A Mathematics, physics, chemistry","volume":"47 1","pages":"31-39"},"PeriodicalIF":0.0000,"publicationDate":"1966-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A generalization of duality theorem in the theory of linear programming\",\"authors\":\"M. Ohtsuka\",\"doi\":\"10.32917/HMJ/1206139186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The well-known duality theorem in the theory of linear programming asserts that, if Jίφ0 and M<oo, then Jί'Φtf and M=M'. We shall generalize this theorem in the present paper. Let X and Y be compact Hausdorff spaces and Φ(x, γ) a universally measurable function on XxY which is bounded below. Let g(χ) be a universally measurable function on X which is bounded below and /(γ) a universally measurable function on Y which is bounded above. Under these general circumstances let Jί be the class of all non-negative Radon measures μ on Y satisfying\",\"PeriodicalId\":17080,\"journal\":{\"name\":\"Journal of science of the Hiroshima University Ser. A Mathematics, physics, chemistry\",\"volume\":\"47 1\",\"pages\":\"31-39\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1966-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of science of the Hiroshima University Ser. A Mathematics, physics, chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32917/HMJ/1206139186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of science of the Hiroshima University Ser. A Mathematics, physics, chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32917/HMJ/1206139186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

线性规划理论中著名的对偶定理断言,如果Jίφ0和M< 0,则Jί'Φtf和M=M'。我们将在本文中推广这个定理。设X和Y是紧的Hausdorff空间,并且Φ(X, γ)是XxY上的一个普遍可测函数,它在下面有界。设g(χ)是X上有界的普遍可测函数,/(γ)是Y上有界的普遍可测函数。在这些一般情况下,让Jί为所有非负氡度量μ Y满足的类
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A generalization of duality theorem in the theory of linear programming
The well-known duality theorem in the theory of linear programming asserts that, if Jίφ0 and M
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信