虚拟键盘的击键识别

Jani Mäntyjärvi, Jussi T. Koivumäki, Petri Vuori
{"title":"虚拟键盘的击键识别","authors":"Jani Mäntyjärvi, Jussi T. Koivumäki, Petri Vuori","doi":"10.1109/ICME.2002.1035630","DOIUrl":null,"url":null,"abstract":"The progress in the field of human-computer interaction with hand held electronic devices, such as, personal digital assistants (PDAs) and mobile phones searches for new interaction techniques. Proximity sensing extends the concept of computer-human interaction beyond actual physical contact with a device. In this paper, a virtual keyboard implementation is presented and keystroke recognition experiments with the keyboard utilizing proximity measurements are described. An infrared (IR) transceiver array is used for detecting the proximity of a finger. Keystroke recognition accuracy is examined with k-nearest neighbor (k-NN) classifier while a multilayer perceptron (MLP) classifier is designed for online implementation. Experiments and results of keystroke classification are presented for both classifiers. The recognition accuracy, which is between 78% and 99% for k-NN classifier and between 69% and 96% for MLP classifier, depends mainly on the location of a specific key on the keyboard area.","PeriodicalId":90694,"journal":{"name":"Proceedings. IEEE International Conference on Multimedia and Expo","volume":"2 1","pages":"429-432 vol.2"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Keystroke recognition for virtual keyboard\",\"authors\":\"Jani Mäntyjärvi, Jussi T. Koivumäki, Petri Vuori\",\"doi\":\"10.1109/ICME.2002.1035630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The progress in the field of human-computer interaction with hand held electronic devices, such as, personal digital assistants (PDAs) and mobile phones searches for new interaction techniques. Proximity sensing extends the concept of computer-human interaction beyond actual physical contact with a device. In this paper, a virtual keyboard implementation is presented and keystroke recognition experiments with the keyboard utilizing proximity measurements are described. An infrared (IR) transceiver array is used for detecting the proximity of a finger. Keystroke recognition accuracy is examined with k-nearest neighbor (k-NN) classifier while a multilayer perceptron (MLP) classifier is designed for online implementation. Experiments and results of keystroke classification are presented for both classifiers. The recognition accuracy, which is between 78% and 99% for k-NN classifier and between 69% and 96% for MLP classifier, depends mainly on the location of a specific key on the keyboard area.\",\"PeriodicalId\":90694,\"journal\":{\"name\":\"Proceedings. IEEE International Conference on Multimedia and Expo\",\"volume\":\"2 1\",\"pages\":\"429-432 vol.2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE International Conference on Multimedia and Expo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME.2002.1035630\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Conference on Multimedia and Expo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2002.1035630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

随着个人数字助理(pda)和移动电话等手持电子设备在人机交互领域的发展,人们正在寻找新的交互技术。近距离感应扩展了人机交互的概念,超越了与设备的实际物理接触。本文提出了一种虚拟键盘的实现方法,并描述了利用接近度测量的键盘按键识别实验。红外(IR)收发器阵列用于检测手指的接近度。采用k-最近邻(k-NN)分类器检测击键识别精度,设计多层感知器(MLP)分类器在线实现。给出了两种分类器的按键分类实验和结果。k-NN分类器的识别准确率在78%到99%之间,MLP分类器的识别准确率在69%到96%之间,这主要取决于特定键在键盘区域上的位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Keystroke recognition for virtual keyboard
The progress in the field of human-computer interaction with hand held electronic devices, such as, personal digital assistants (PDAs) and mobile phones searches for new interaction techniques. Proximity sensing extends the concept of computer-human interaction beyond actual physical contact with a device. In this paper, a virtual keyboard implementation is presented and keystroke recognition experiments with the keyboard utilizing proximity measurements are described. An infrared (IR) transceiver array is used for detecting the proximity of a finger. Keystroke recognition accuracy is examined with k-nearest neighbor (k-NN) classifier while a multilayer perceptron (MLP) classifier is designed for online implementation. Experiments and results of keystroke classification are presented for both classifiers. The recognition accuracy, which is between 78% and 99% for k-NN classifier and between 69% and 96% for MLP classifier, depends mainly on the location of a specific key on the keyboard area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信