投入产出模型在摩尔多瓦经济中的应用经验

{"title":"投入产出模型在摩尔多瓦经济中的应用经验","authors":"","doi":"10.36004/nier.es.2019.1-03","DOIUrl":null,"url":null,"abstract":"The main goal of this article is to present an overview of the input-output models which have been applied to Moldovan economy development study. We examined: static input-output model, dynamic input-output model restricted by limited energy resources, and the Markov chain approach based on the input-output tables. \nAll these models have been examined using statistic data referring to the input-output table, constructed on the base of aggregated branches of the Moldovan economy. Static and dynamic optimization models were formulated, simulation calculation was done and analysed. Input-output table balancing problem was solved using RAS method. For dynamic model matrix of the investment coefficients was constructed. The emphasis was putt on the problem of applying the theory of Markov chain for examination of the 19 and 16 branches in the framework of the input-output model for Republic of Moldova. A square exchange matrix of order has been constructed. Every branch was considered as one of the states of the Markov chain with states. We introduced a new -th absorption state so that the examined matrix became of the order . The obtained transition matrix – probabilities matrix has been used for forecasting","PeriodicalId":30515,"journal":{"name":"Economy and Sociology","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EXPERIENCE OF THE INPUT-OUTPUT MODELS APPLICATION TO THE MOLDOVAN ECONOMY\",\"authors\":\"\",\"doi\":\"10.36004/nier.es.2019.1-03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main goal of this article is to present an overview of the input-output models which have been applied to Moldovan economy development study. We examined: static input-output model, dynamic input-output model restricted by limited energy resources, and the Markov chain approach based on the input-output tables. \\nAll these models have been examined using statistic data referring to the input-output table, constructed on the base of aggregated branches of the Moldovan economy. Static and dynamic optimization models were formulated, simulation calculation was done and analysed. Input-output table balancing problem was solved using RAS method. For dynamic model matrix of the investment coefficients was constructed. The emphasis was putt on the problem of applying the theory of Markov chain for examination of the 19 and 16 branches in the framework of the input-output model for Republic of Moldova. A square exchange matrix of order has been constructed. Every branch was considered as one of the states of the Markov chain with states. We introduced a new -th absorption state so that the examined matrix became of the order . The obtained transition matrix – probabilities matrix has been used for forecasting\",\"PeriodicalId\":30515,\"journal\":{\"name\":\"Economy and Sociology\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Economy and Sociology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36004/nier.es.2019.1-03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Economy and Sociology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36004/nier.es.2019.1-03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的主要目的是对投入产出模型在摩尔多瓦经济发展研究中的应用进行概述。研究了静态投入产出模型、有限能源约束下的动态投入产出模型和基于投入产出表的马尔可夫链方法。所有这些模型都是用统计数据来检验的,这些数据参考了以摩尔多瓦经济的综合部门为基础构建的投入产出表。建立了静态和动态优化模型,并进行了仿真计算和分析。采用RAS法求解输入输出表平衡问题。对于动态模型,构造了投资系数矩阵。重点是在摩尔多瓦共和国投入产出模型框架内应用马尔可夫链理论检查19和16个分支的问题。构造了一个有序的方阵交换矩阵。每个分支都被认为是带状态的马尔可夫链的一个状态。我们引入了一个新的-th吸收态,使所检测的矩阵具有这个数量级。利用得到的转移矩阵-概率矩阵进行预测
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EXPERIENCE OF THE INPUT-OUTPUT MODELS APPLICATION TO THE MOLDOVAN ECONOMY
The main goal of this article is to present an overview of the input-output models which have been applied to Moldovan economy development study. We examined: static input-output model, dynamic input-output model restricted by limited energy resources, and the Markov chain approach based on the input-output tables. All these models have been examined using statistic data referring to the input-output table, constructed on the base of aggregated branches of the Moldovan economy. Static and dynamic optimization models were formulated, simulation calculation was done and analysed. Input-output table balancing problem was solved using RAS method. For dynamic model matrix of the investment coefficients was constructed. The emphasis was putt on the problem of applying the theory of Markov chain for examination of the 19 and 16 branches in the framework of the input-output model for Republic of Moldova. A square exchange matrix of order has been constructed. Every branch was considered as one of the states of the Markov chain with states. We introduced a new -th absorption state so that the examined matrix became of the order . The obtained transition matrix – probabilities matrix has been used for forecasting
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信