视频去噪的光流算法的定性研究

Hannes Fassold
{"title":"视频去噪的光流算法的定性研究","authors":"Hannes Fassold","doi":"10.48550/arXiv.2204.08791","DOIUrl":null,"url":null,"abstract":"A good optical flow estimation is crucial in many video analysis and restoration algorithms employed in application fields like media industry, industrial inspection and automotive. In this work, we investigate how well optical flow algorithms perform qualitatively when integrated into a state of the art video denoising algorithm. Both classic optical flow algorithms (e.g. TV-L1) as well as recent deep learning based algorithm (like RAFT or BMBC) will be taken into account. For the qualitative investigation, we will employ realistic content with challenging characteristic (noisy content, large motion etc.) instead of the standard images used in most publications.","PeriodicalId":93362,"journal":{"name":"Proceedings of the Future Technologies Conference (FTC) 2020. Future Technologies Conference (2020 : Online)","volume":"112 1","pages":"765-775"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A qualitative investigation of optical flow algorithms for video denoising\",\"authors\":\"Hannes Fassold\",\"doi\":\"10.48550/arXiv.2204.08791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A good optical flow estimation is crucial in many video analysis and restoration algorithms employed in application fields like media industry, industrial inspection and automotive. In this work, we investigate how well optical flow algorithms perform qualitatively when integrated into a state of the art video denoising algorithm. Both classic optical flow algorithms (e.g. TV-L1) as well as recent deep learning based algorithm (like RAFT or BMBC) will be taken into account. For the qualitative investigation, we will employ realistic content with challenging characteristic (noisy content, large motion etc.) instead of the standard images used in most publications.\",\"PeriodicalId\":93362,\"journal\":{\"name\":\"Proceedings of the Future Technologies Conference (FTC) 2020. Future Technologies Conference (2020 : Online)\",\"volume\":\"112 1\",\"pages\":\"765-775\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Future Technologies Conference (FTC) 2020. Future Technologies Conference (2020 : Online)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2204.08791\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Future Technologies Conference (FTC) 2020. Future Technologies Conference (2020 : Online)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2204.08791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在媒体行业、工业检测和汽车等应用领域的视频分析和恢复算法中,良好的光流估计是至关重要的。在这项工作中,我们研究了当集成到最先进的视频去噪算法中时,光流算法的定性性能如何。经典的光流算法(如TV-L1)以及最近基于深度学习的算法(如RAFT或BMBC)都将被考虑在内。对于定性调查,我们将采用具有挑战性特征的现实内容(嘈杂内容,大运动等),而不是大多数出版物中使用的标准图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A qualitative investigation of optical flow algorithms for video denoising
A good optical flow estimation is crucial in many video analysis and restoration algorithms employed in application fields like media industry, industrial inspection and automotive. In this work, we investigate how well optical flow algorithms perform qualitatively when integrated into a state of the art video denoising algorithm. Both classic optical flow algorithms (e.g. TV-L1) as well as recent deep learning based algorithm (like RAFT or BMBC) will be taken into account. For the qualitative investigation, we will employ realistic content with challenging characteristic (noisy content, large motion etc.) instead of the standard images used in most publications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信