关于具有多方的私有同步消息的复杂性的说明

Marshall Ball, Tim Randolph
{"title":"关于具有多方的私有同步消息的复杂性的说明","authors":"Marshall Ball, Tim Randolph","doi":"10.4230/LIPIcs.ITC.2022.7","DOIUrl":null,"url":null,"abstract":"For k = ω (log n ), we prove a Ω( k 2 n/ log( kn )) lower bound on private simultaneous messages (PSM) with k parties who receive n -bit inputs. This extends the Ω( n ) lower bound due to Appelbaum, Holenstein, Mishra and Shayevitz [Journal of Cryptology, 2019] to the many-party ( k = ω (log n )) setting. It is the first PSM lower bound that increases quadratically with the number of parties, and moreover the first unconditional, explicit bound that grows with both k and n . This note extends the work of Ball, Holmgren, Ishai, Liu, and Malkin [ITCS 2020], who prove communication complexity lower bounds on decomposable randomized encodings (DREs), which correspond to the special case of k -party PSMs with n = 1. To give a concise and readable introduction to the method, we focus our presentation on perfect PSM schemes. Theory of computation Communication complexity;","PeriodicalId":6403,"journal":{"name":"2007 IEEE International Test Conference","volume":"21 1","pages":"7:1-7:12"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Note on the Complexity of Private Simultaneous Messages with Many Parties\",\"authors\":\"Marshall Ball, Tim Randolph\",\"doi\":\"10.4230/LIPIcs.ITC.2022.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For k = ω (log n ), we prove a Ω( k 2 n/ log( kn )) lower bound on private simultaneous messages (PSM) with k parties who receive n -bit inputs. This extends the Ω( n ) lower bound due to Appelbaum, Holenstein, Mishra and Shayevitz [Journal of Cryptology, 2019] to the many-party ( k = ω (log n )) setting. It is the first PSM lower bound that increases quadratically with the number of parties, and moreover the first unconditional, explicit bound that grows with both k and n . This note extends the work of Ball, Holmgren, Ishai, Liu, and Malkin [ITCS 2020], who prove communication complexity lower bounds on decomposable randomized encodings (DREs), which correspond to the special case of k -party PSMs with n = 1. To give a concise and readable introduction to the method, we focus our presentation on perfect PSM schemes. Theory of computation Communication complexity;\",\"PeriodicalId\":6403,\"journal\":{\"name\":\"2007 IEEE International Test Conference\",\"volume\":\"21 1\",\"pages\":\"7:1-7:12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Test Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.ITC.2022.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Test Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.ITC.2022.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

对于k = ω (log n),我们证明了具有k个接收n位输入的私有同步消息(PSM)的Ω(k2n / log(kn))下界。这将Appelbaum, Holenstein, Mishra和Shayevitz [Journal of cryptoology, 2019]提出的Ω(n)下界扩展到多人(k = Ω(log n))设置。它是第一个PSM下界随着参与方的数量二次增长,而且是第一个无条件的、显式的下界同时随k和n增长。本文扩展了Ball, Holmgren, Ishai, Liu, and Malkin [ITCS 2020]的工作,他们证明了可分解随机编码(DREs)的通信复杂度下界,对应于n = 1的k方psm的特殊情况。为了简明易懂地介绍该方法,我们将重点介绍完美的PSM方案。通信复杂性计算理论;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Note on the Complexity of Private Simultaneous Messages with Many Parties
For k = ω (log n ), we prove a Ω( k 2 n/ log( kn )) lower bound on private simultaneous messages (PSM) with k parties who receive n -bit inputs. This extends the Ω( n ) lower bound due to Appelbaum, Holenstein, Mishra and Shayevitz [Journal of Cryptology, 2019] to the many-party ( k = ω (log n )) setting. It is the first PSM lower bound that increases quadratically with the number of parties, and moreover the first unconditional, explicit bound that grows with both k and n . This note extends the work of Ball, Holmgren, Ishai, Liu, and Malkin [ITCS 2020], who prove communication complexity lower bounds on decomposable randomized encodings (DREs), which correspond to the special case of k -party PSMs with n = 1. To give a concise and readable introduction to the method, we focus our presentation on perfect PSM schemes. Theory of computation Communication complexity;
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信