结合自组织图谱和层次聚类分析片段后分子轨道计算中的蛋白质-配体相互作用

IF 0.4 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Y. Kawashima, Natsumi Mori, N. Kawashita, Yu-Shi Tian, T. Takagi
{"title":"结合自组织图谱和层次聚类分析片段后分子轨道计算中的蛋白质-配体相互作用","authors":"Y. Kawashima, Natsumi Mori, N. Kawashita, Yu-Shi Tian, T. Takagi","doi":"10.1273/CBIJ.21.1","DOIUrl":null,"url":null,"abstract":"Fragment molecular orbital (FMO) calculation is a useful ab initio method for analyzing protein–ligand interactions in the current structure-based drug design. When multiple ligands exist for one receptor, a post-FMO calculation tool is required because of large numbers of interaction energy decomposition terms calculated using this method. In this study, a method that combines self-organizing maps (SOM) and hierarchical clustering analysis (HCA) was proposed to analyze the results of the FMO energy components. This method could effectively compress the high-dimensional energy terms and is expected to be useful to analyze the interaction between protein and ligands. A case study of antitype 2 diabetes mellitus target DPP-IV and its inhibitors was analyzed to verify the feasibility of the proposed method. After performing dimensional compression using SOM and further grouping using HCA, we obtained superclasses of the inhibitors based on the dispersion energy (DI), which showed consistency with structural information, indicating that further analyses of detailed energies per superclass can be an effective approach for obtaining important ligand–protein interactions.","PeriodicalId":40659,"journal":{"name":"Chem-Bio Informatics Journal","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2021-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining self-organizing maps and hierarchical clustering for protein–ligand interaction analysis in post-fragment molecular orbital calculation\",\"authors\":\"Y. Kawashima, Natsumi Mori, N. Kawashita, Yu-Shi Tian, T. Takagi\",\"doi\":\"10.1273/CBIJ.21.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fragment molecular orbital (FMO) calculation is a useful ab initio method for analyzing protein–ligand interactions in the current structure-based drug design. When multiple ligands exist for one receptor, a post-FMO calculation tool is required because of large numbers of interaction energy decomposition terms calculated using this method. In this study, a method that combines self-organizing maps (SOM) and hierarchical clustering analysis (HCA) was proposed to analyze the results of the FMO energy components. This method could effectively compress the high-dimensional energy terms and is expected to be useful to analyze the interaction between protein and ligands. A case study of antitype 2 diabetes mellitus target DPP-IV and its inhibitors was analyzed to verify the feasibility of the proposed method. After performing dimensional compression using SOM and further grouping using HCA, we obtained superclasses of the inhibitors based on the dispersion energy (DI), which showed consistency with structural information, indicating that further analyses of detailed energies per superclass can be an effective approach for obtaining important ligand–protein interactions.\",\"PeriodicalId\":40659,\"journal\":{\"name\":\"Chem-Bio Informatics Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem-Bio Informatics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1273/CBIJ.21.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem-Bio Informatics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1273/CBIJ.21.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

片段分子轨道(FMO)计算是当前基于结构的药物设计中分析蛋白质-配体相互作用的一种有用的从头计算方法。当一个受体存在多个配体时,由于该方法计算的相互作用能分解项较多,需要使用fmo后计算工具。本研究提出了一种结合自组织映射(SOM)和层次聚类分析(HCA)的方法来分析FMO能量分量的结果。该方法可以有效地压缩高维能量项,有望用于分析蛋白质与配体之间的相互作用。以2型糖尿病靶点DPP-IV及其抑制剂为例,验证了该方法的可行性。通过SOM进行维数压缩和HCA进一步分组,我们得到了基于弥散能(DI)的抑制剂超类,这与结构信息一致,表明进一步分析每个超类的详细能量是获得重要配体-蛋白质相互作用的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combining self-organizing maps and hierarchical clustering for protein–ligand interaction analysis in post-fragment molecular orbital calculation
Fragment molecular orbital (FMO) calculation is a useful ab initio method for analyzing protein–ligand interactions in the current structure-based drug design. When multiple ligands exist for one receptor, a post-FMO calculation tool is required because of large numbers of interaction energy decomposition terms calculated using this method. In this study, a method that combines self-organizing maps (SOM) and hierarchical clustering analysis (HCA) was proposed to analyze the results of the FMO energy components. This method could effectively compress the high-dimensional energy terms and is expected to be useful to analyze the interaction between protein and ligands. A case study of antitype 2 diabetes mellitus target DPP-IV and its inhibitors was analyzed to verify the feasibility of the proposed method. After performing dimensional compression using SOM and further grouping using HCA, we obtained superclasses of the inhibitors based on the dispersion energy (DI), which showed consistency with structural information, indicating that further analyses of detailed energies per superclass can be an effective approach for obtaining important ligand–protein interactions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chem-Bio Informatics Journal
Chem-Bio Informatics Journal BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
0.60
自引率
0.00%
发文量
8
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信