H. Ayoobi, M. Cao, R. Verbrugge, B. Verheij
{"title":"Argue to Learn: Accelerated Argumentation-Based Learning","authors":"H. Ayoobi, M. Cao, R. Verbrugge, B. Verheij","doi":"10.1109/ICMLA52953.2021.00183","DOIUrl":null,"url":null,"abstract":"Human agents can acquire knowledge and learn through argumentation. Inspired by this fact, we propose a novel argumentation-based machine learning technique that can be used for online incremental learning scenarios. Existing methods for online incremental learning problems typically do not generalize well from just a few learning instances. Our previous argumentation-based online incremental learning method outperformed state-of-the-art methods in terms of accuracy and learning speed. However, it was neither memory-efficient nor computationally efficient since the algorithm used the power set of the feature values for updating the model. In this paper, we propose an accelerated version of the algorithm, with polynomial instead of exponential complexity, while achieving higher learning accuracy. The proposed method is at least $200\\times$ faster than the original argumentation-based learning method and is more memory-efficient.","PeriodicalId":6750,"journal":{"name":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"54 1","pages":"1118-1123"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA52953.2021.00183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

人类代理可以通过论证来获取知识和学习。受这一事实的启发,我们提出了一种新的基于论证的机器学习技术,可用于在线增量学习场景。现有的在线增量学习问题的方法通常不能很好地从几个学习实例中泛化。我们之前基于论证的在线增量学习方法在准确性和学习速度方面优于最先进的方法。然而,由于该算法使用特征值的幂集来更新模型,因此既不节省内存也不节省计算效率。在本文中,我们提出了该算法的加速版本,使用多项式而不是指数复杂度,同时实现了更高的学习精度。提出的方法比原始的基于论证的学习方法至少快200倍,并且更节省内存。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Argue to Learn: Accelerated Argumentation-Based Learning
Human agents can acquire knowledge and learn through argumentation. Inspired by this fact, we propose a novel argumentation-based machine learning technique that can be used for online incremental learning scenarios. Existing methods for online incremental learning problems typically do not generalize well from just a few learning instances. Our previous argumentation-based online incremental learning method outperformed state-of-the-art methods in terms of accuracy and learning speed. However, it was neither memory-efficient nor computationally efficient since the algorithm used the power set of the feature values for updating the model. In this paper, we propose an accelerated version of the algorithm, with polynomial instead of exponential complexity, while achieving higher learning accuracy. The proposed method is at least $200\times$ faster than the original argumentation-based learning method and is more memory-efficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信