{"title":"de Sitter平面实扩展群模型上的左不变拟sasakian结构","authors":"V. I. Pan’zhenskii, Yulia V. Dyranova","doi":"10.17223/19988621/82/2","DOIUrl":null,"url":null,"abstract":"In this paper, a group model for a real extension of the de Sitter plane is pro-posed. This group contains a group of special matrices, which is a subgroup of the general linear group. It is established that there exists a left-invariant contact metric structure on this group, which is normal and, therefore, para-Sasakian. The basis vector fields of the Lie algebra of infinitesimal automorphisms are found. The Lie group of automorphisms has the maximum dimension and, in addition to the Levi-Civita connection, it also retains a contact metric connection with skew-symmetric torsion. In this connection, all structural tensors of the para-Sasakian structure, as well as the torsion and curvature tensors, are covariantly constant. Using a nonholonomic field of orthonormal frames adapted to the contact distribution, an orthogonal projection of the Levi-Civita connection onto the contact distribution is found, which is a truncated connection. Passing to natural coordinates, differential equations of geodesics of the truncated connection and Levi-Civita connection are found. Thus, the Levi-Civita contact geodesic connections coincide with the truncated connection geodesics. This means that through each point in each contact direction there is a unique Levi-Civita geodesic connection tangent to the contact distribution. The Levi-Civita connection, like the contact metric connection, is consistent with the contact distribution.","PeriodicalId":43729,"journal":{"name":"Vestnik Tomskogo Gosudarstvennogo Universiteta-Matematika i Mekhanika-Tomsk State University Journal of Mathematics and Mechanics","volume":"55 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Left-invariant para-Sasakian structure on the group model of the real extension of the de Sitter plane\",\"authors\":\"V. I. Pan’zhenskii, Yulia V. Dyranova\",\"doi\":\"10.17223/19988621/82/2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a group model for a real extension of the de Sitter plane is pro-posed. This group contains a group of special matrices, which is a subgroup of the general linear group. It is established that there exists a left-invariant contact metric structure on this group, which is normal and, therefore, para-Sasakian. The basis vector fields of the Lie algebra of infinitesimal automorphisms are found. The Lie group of automorphisms has the maximum dimension and, in addition to the Levi-Civita connection, it also retains a contact metric connection with skew-symmetric torsion. In this connection, all structural tensors of the para-Sasakian structure, as well as the torsion and curvature tensors, are covariantly constant. Using a nonholonomic field of orthonormal frames adapted to the contact distribution, an orthogonal projection of the Levi-Civita connection onto the contact distribution is found, which is a truncated connection. Passing to natural coordinates, differential equations of geodesics of the truncated connection and Levi-Civita connection are found. Thus, the Levi-Civita contact geodesic connections coincide with the truncated connection geodesics. This means that through each point in each contact direction there is a unique Levi-Civita geodesic connection tangent to the contact distribution. The Levi-Civita connection, like the contact metric connection, is consistent with the contact distribution.\",\"PeriodicalId\":43729,\"journal\":{\"name\":\"Vestnik Tomskogo Gosudarstvennogo Universiteta-Matematika i Mekhanika-Tomsk State University Journal of Mathematics and Mechanics\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vestnik Tomskogo Gosudarstvennogo Universiteta-Matematika i Mekhanika-Tomsk State University Journal of Mathematics and Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17223/19988621/82/2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik Tomskogo Gosudarstvennogo Universiteta-Matematika i Mekhanika-Tomsk State University Journal of Mathematics and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17223/19988621/82/2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Left-invariant para-Sasakian structure on the group model of the real extension of the de Sitter plane
In this paper, a group model for a real extension of the de Sitter plane is pro-posed. This group contains a group of special matrices, which is a subgroup of the general linear group. It is established that there exists a left-invariant contact metric structure on this group, which is normal and, therefore, para-Sasakian. The basis vector fields of the Lie algebra of infinitesimal automorphisms are found. The Lie group of automorphisms has the maximum dimension and, in addition to the Levi-Civita connection, it also retains a contact metric connection with skew-symmetric torsion. In this connection, all structural tensors of the para-Sasakian structure, as well as the torsion and curvature tensors, are covariantly constant. Using a nonholonomic field of orthonormal frames adapted to the contact distribution, an orthogonal projection of the Levi-Civita connection onto the contact distribution is found, which is a truncated connection. Passing to natural coordinates, differential equations of geodesics of the truncated connection and Levi-Civita connection are found. Thus, the Levi-Civita contact geodesic connections coincide with the truncated connection geodesics. This means that through each point in each contact direction there is a unique Levi-Civita geodesic connection tangent to the contact distribution. The Levi-Civita connection, like the contact metric connection, is consistent with the contact distribution.