Lei Shi, Yuyue Zhang, Fangyan Li, Yuefan Du, Bo Yao
{"title":"高温气体中分子的多尺度波段k分布模型","authors":"Lei Shi, Yuyue Zhang, Fangyan Li, Yuefan Du, Bo Yao","doi":"10.1155/2022/5502651","DOIUrl":null,"url":null,"abstract":"Radiation heat transfer plays a dominant role in high-temperature flow field. Rapid and reliable calculation of spectral radiation properties is beneficial for thermal analysis and detection of radiation target. In this paper, a multiscale-band k-distribution model is proposed for the study of radiation properties in high-temperature gases. The accurate absorption coefficients are firstly calculated using the line-by-line model. The slope of the accurate absorption coefficient line and its slope threshold are then extracted and analyzed, which act as a basis to divide the absorption coefficient line into multiple segments. For different segments, different bandwidths are chosen for the corresponding band k-distribution model. In the model, the 7-point Gauss–Lobatto method is employed to obtain the optimized absorption coefficients. These optimized absorption coefficients formed the absorption coefficient database. The radiation intensities of gases are finally calculated and analyzed based on the optimized database. Experimental results suggest that the multiscale-band k-distribution model can improve the efficiency up to 35% compared with the widely used narrow-band k-distribution model. Simultaneously, the relative calculation error is less than 5% compared with the most accurate line-by-line model.","PeriodicalId":17079,"journal":{"name":"Journal of Spectroscopy","volume":"54 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multiscale-Band K-Distribution Model for Molecules in High-Temperature Gases\",\"authors\":\"Lei Shi, Yuyue Zhang, Fangyan Li, Yuefan Du, Bo Yao\",\"doi\":\"10.1155/2022/5502651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radiation heat transfer plays a dominant role in high-temperature flow field. Rapid and reliable calculation of spectral radiation properties is beneficial for thermal analysis and detection of radiation target. In this paper, a multiscale-band k-distribution model is proposed for the study of radiation properties in high-temperature gases. The accurate absorption coefficients are firstly calculated using the line-by-line model. The slope of the accurate absorption coefficient line and its slope threshold are then extracted and analyzed, which act as a basis to divide the absorption coefficient line into multiple segments. For different segments, different bandwidths are chosen for the corresponding band k-distribution model. In the model, the 7-point Gauss–Lobatto method is employed to obtain the optimized absorption coefficients. These optimized absorption coefficients formed the absorption coefficient database. The radiation intensities of gases are finally calculated and analyzed based on the optimized database. Experimental results suggest that the multiscale-band k-distribution model can improve the efficiency up to 35% compared with the widely used narrow-band k-distribution model. Simultaneously, the relative calculation error is less than 5% compared with the most accurate line-by-line model.\",\"PeriodicalId\":17079,\"journal\":{\"name\":\"Journal of Spectroscopy\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/5502651\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2022/5502651","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Multiscale-Band K-Distribution Model for Molecules in High-Temperature Gases
Radiation heat transfer plays a dominant role in high-temperature flow field. Rapid and reliable calculation of spectral radiation properties is beneficial for thermal analysis and detection of radiation target. In this paper, a multiscale-band k-distribution model is proposed for the study of radiation properties in high-temperature gases. The accurate absorption coefficients are firstly calculated using the line-by-line model. The slope of the accurate absorption coefficient line and its slope threshold are then extracted and analyzed, which act as a basis to divide the absorption coefficient line into multiple segments. For different segments, different bandwidths are chosen for the corresponding band k-distribution model. In the model, the 7-point Gauss–Lobatto method is employed to obtain the optimized absorption coefficients. These optimized absorption coefficients formed the absorption coefficient database. The radiation intensities of gases are finally calculated and analyzed based on the optimized database. Experimental results suggest that the multiscale-band k-distribution model can improve the efficiency up to 35% compared with the widely used narrow-band k-distribution model. Simultaneously, the relative calculation error is less than 5% compared with the most accurate line-by-line model.
期刊介绍:
Journal of Spectroscopy (formerly titled Spectroscopy: An International Journal) is a peer-reviewed, open access journal that publishes original research articles as well as review articles in all areas of spectroscopy.