MeerKAT - II上的千脉冲星阵列程序。脉冲星子阵监测的观测策略

X. Song, P. Weltevrede, M. Keith, S. Johnston, A. Karastergiou, M. Bailes, E. Barr, S. Buchner, M. Geyer, B. Hugo, A. Jameson, A. Parthasarathy, D. Reardon, M. Serylak, R. Shannon, R. Spiewak, W. van Straten, V. Venkatraman Krishnan
{"title":"MeerKAT - II上的千脉冲星阵列程序。脉冲星子阵监测的观测策略","authors":"X. Song, P. Weltevrede, M. Keith, S. Johnston, A. Karastergiou, M. Bailes, E. Barr, S. Buchner, M. Geyer, B. Hugo, A. Jameson, A. Parthasarathy, D. Reardon, M. Serylak, R. Shannon, R. Spiewak, W. van Straten, V. Venkatraman Krishnan","doi":"10.1093/mnras/staa3805","DOIUrl":null,"url":null,"abstract":"The Thousand Pulsar Array (TPA) project currently monitors about 500 pulsars with the sensitive MeerKAT radio telescope by using subarrays to observe multiple sources simultaneously. Here we define the adopted observing strategy, which guarantees that each target is observed long enough to obtain a high fidelity pulse profile, thereby reaching a sufficient precision of a simple pulse shape parameter. This precision is estimated from the contribution of the system noise of the telescope, and the pulse-to-pulse variability of each pulsar, which we quantify under some simplifying assumptions. We test the assumptions and choice of model parameters using data from the MeerKAT 64-dish array, Lovell and Parkes telescopes. We demonstrate that the observing times derived from our method produce high fidelity pulse profiles that meet the needs of the TPA in studying pulse shape variability and pulsar timing. Our method can also be used to compare strategies for observing large numbers of pulsars with telescopes capable of forming multiple subarray configurations. We find that using two 32-dish MeerKAT subarrays is the most efficient strategy for the TPA project. We also find that the ability to observe in different array configurations will become increasingly important for large observing programmes using the Square Kilometre Array telescope.","PeriodicalId":8437,"journal":{"name":"arXiv: High Energy Astrophysical Phenomena","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"The Thousand-Pulsar-Array programme on MeerKAT – II. Observing strategy for pulsar monitoring with subarrays\",\"authors\":\"X. Song, P. Weltevrede, M. Keith, S. Johnston, A. Karastergiou, M. Bailes, E. Barr, S. Buchner, M. Geyer, B. Hugo, A. Jameson, A. Parthasarathy, D. Reardon, M. Serylak, R. Shannon, R. Spiewak, W. van Straten, V. Venkatraman Krishnan\",\"doi\":\"10.1093/mnras/staa3805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Thousand Pulsar Array (TPA) project currently monitors about 500 pulsars with the sensitive MeerKAT radio telescope by using subarrays to observe multiple sources simultaneously. Here we define the adopted observing strategy, which guarantees that each target is observed long enough to obtain a high fidelity pulse profile, thereby reaching a sufficient precision of a simple pulse shape parameter. This precision is estimated from the contribution of the system noise of the telescope, and the pulse-to-pulse variability of each pulsar, which we quantify under some simplifying assumptions. We test the assumptions and choice of model parameters using data from the MeerKAT 64-dish array, Lovell and Parkes telescopes. We demonstrate that the observing times derived from our method produce high fidelity pulse profiles that meet the needs of the TPA in studying pulse shape variability and pulsar timing. Our method can also be used to compare strategies for observing large numbers of pulsars with telescopes capable of forming multiple subarray configurations. We find that using two 32-dish MeerKAT subarrays is the most efficient strategy for the TPA project. We also find that the ability to observe in different array configurations will become increasingly important for large observing programmes using the Square Kilometre Array telescope.\",\"PeriodicalId\":8437,\"journal\":{\"name\":\"arXiv: High Energy Astrophysical Phenomena\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: High Energy Astrophysical Phenomena\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/mnras/staa3805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Astrophysical Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/mnras/staa3805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

千脉冲星阵列(TPA)项目目前使用灵敏的MeerKAT射电望远镜通过子阵列同时观测多个源来监测大约500颗脉冲星。在此,我们定义了所采用的观测策略,该策略保证每个目标的观测时间足够长,以获得高保真的脉冲轮廓,从而达到简单脉冲形状参数的足够精度。这个精度是通过望远镜系统噪声的贡献和每个脉冲星的脉冲间变异性来估计的,我们在一些简化的假设下量化了这些变异性。我们使用MeerKAT 64碟阵列、洛弗尔和帕克斯望远镜的数据来检验假设和模型参数的选择。我们证明,从我们的方法得到的观测时间产生高保真的脉冲轮廓,满足TPA在研究脉冲形状变异性和脉冲星定时方面的需要。我们的方法也可以用来比较能够形成多个子阵列配置的望远镜观测大量脉冲星的策略。我们发现使用两个32碟MeerKAT子阵列是TPA项目最有效的策略。我们还发现,对于使用平方公里阵列望远镜的大型观测项目来说,在不同阵列配置下进行观测的能力将变得越来越重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Thousand-Pulsar-Array programme on MeerKAT – II. Observing strategy for pulsar monitoring with subarrays
The Thousand Pulsar Array (TPA) project currently monitors about 500 pulsars with the sensitive MeerKAT radio telescope by using subarrays to observe multiple sources simultaneously. Here we define the adopted observing strategy, which guarantees that each target is observed long enough to obtain a high fidelity pulse profile, thereby reaching a sufficient precision of a simple pulse shape parameter. This precision is estimated from the contribution of the system noise of the telescope, and the pulse-to-pulse variability of each pulsar, which we quantify under some simplifying assumptions. We test the assumptions and choice of model parameters using data from the MeerKAT 64-dish array, Lovell and Parkes telescopes. We demonstrate that the observing times derived from our method produce high fidelity pulse profiles that meet the needs of the TPA in studying pulse shape variability and pulsar timing. Our method can also be used to compare strategies for observing large numbers of pulsars with telescopes capable of forming multiple subarray configurations. We find that using two 32-dish MeerKAT subarrays is the most efficient strategy for the TPA project. We also find that the ability to observe in different array configurations will become increasingly important for large observing programmes using the Square Kilometre Array telescope.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信