基于simmrank和蚁群优化的社交网站好友推荐算法

Q4 Computer Science
Lian-ju NING, Hai-yan DUAN
{"title":"基于simmrank和蚁群优化的社交网站好友推荐算法","authors":"Lian-ju NING,&nbsp;Hai-yan DUAN","doi":"10.1016/S1005-8885(14)60508-2","DOIUrl":null,"url":null,"abstract":"<div><p>We put forward an algorithm on friend-recommendation of social networking sites based on SimRank and ant colony optimization, which broadens the appliance of the algorithm in this academic question. The algorithm focuses on the existing relationships between the members as the initial measurement and constructs artificial ants’ completed routing graph. Finally, an ordered and limited list of personalized recommendations through recursive optimization is produced. In the end, we verify the algorithm's rationality and validity through simulation and the result shows that it can improve the precision of friend-recommendation.</p></div>","PeriodicalId":35359,"journal":{"name":"Journal of China Universities of Posts and Telecommunications","volume":"21 ","pages":"Pages 79-87"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1005-8885(14)60508-2","citationCount":"3","resultStr":"{\"title\":\"An algorithm for friend-recommendation of social networking sites based on SimRank and ant colony optimization\",\"authors\":\"Lian-ju NING,&nbsp;Hai-yan DUAN\",\"doi\":\"10.1016/S1005-8885(14)60508-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We put forward an algorithm on friend-recommendation of social networking sites based on SimRank and ant colony optimization, which broadens the appliance of the algorithm in this academic question. The algorithm focuses on the existing relationships between the members as the initial measurement and constructs artificial ants’ completed routing graph. Finally, an ordered and limited list of personalized recommendations through recursive optimization is produced. In the end, we verify the algorithm's rationality and validity through simulation and the result shows that it can improve the precision of friend-recommendation.</p></div>\",\"PeriodicalId\":35359,\"journal\":{\"name\":\"Journal of China Universities of Posts and Telecommunications\",\"volume\":\"21 \",\"pages\":\"Pages 79-87\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1005-8885(14)60508-2\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of China Universities of Posts and Telecommunications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1005888514605082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of China Universities of Posts and Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1005888514605082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 3

摘要

我们提出了一种基于simmrank和蚁群优化的社交网站好友推荐算法,拓宽了算法在这一学术问题中的应用。该算法以蚁群成员之间存在的关系为初始度量,构建人工蚂蚁的完整路由图。最后,通过递归优化得到有序有限的个性化推荐列表。最后通过仿真验证了算法的合理性和有效性,结果表明该算法可以提高好友推荐的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An algorithm for friend-recommendation of social networking sites based on SimRank and ant colony optimization

We put forward an algorithm on friend-recommendation of social networking sites based on SimRank and ant colony optimization, which broadens the appliance of the algorithm in this academic question. The algorithm focuses on the existing relationships between the members as the initial measurement and constructs artificial ants’ completed routing graph. Finally, an ordered and limited list of personalized recommendations through recursive optimization is produced. In the end, we verify the algorithm's rationality and validity through simulation and the result shows that it can improve the precision of friend-recommendation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
1878
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信