A. Endruweit, S. Fritzsche, R. Thull,, A. Haase, W. Baur
{"title":"高性能复合材料在医学工程中的应用:磁共振成像中的敏感性伪影","authors":"A. Endruweit, S. Fritzsche, R. Thull,, A. Haase, W. Baur","doi":"10.1177/0731684405042954","DOIUrl":null,"url":null,"abstract":"The interaction of carbon fiber/epoxy composite parts with the magnetic fields in magnetic resonance imaging (MRI) for medical diagnostics has been quantitatively estimated for the example of the Riechert stereotactic head ring. Rings from carbon/epoxy composite have been compared with rings from other materials with respect to their influence on the applied magnetic field. For a fiber volume fraction ’ 0.5 and an angle between the fiber orientation and the field direction 90, the magnetic field disturbances caused by composite rings are similar to those caused by non-ferromagnetic metals as Cu or Al. Due to their significantly lower susceptibility values, carbon HT fibers are to be preferred to carbon HM fibers with respect to their interaction with magnetic fields. Induction of significant macroscopic eddy currents for changes of the magnetic flux through the rings is not to be expected.","PeriodicalId":16971,"journal":{"name":"Journal of Reinforced Plastics & Composites","volume":"41 1","pages":"131 - 146"},"PeriodicalIF":0.0000,"publicationDate":"2005-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"High-performance Composites for Applications in Medical Engineering: Susceptibility Artifacts in Magnetic Resonance Imaging\",\"authors\":\"A. Endruweit, S. Fritzsche, R. Thull,, A. Haase, W. Baur\",\"doi\":\"10.1177/0731684405042954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The interaction of carbon fiber/epoxy composite parts with the magnetic fields in magnetic resonance imaging (MRI) for medical diagnostics has been quantitatively estimated for the example of the Riechert stereotactic head ring. Rings from carbon/epoxy composite have been compared with rings from other materials with respect to their influence on the applied magnetic field. For a fiber volume fraction ’ 0.5 and an angle between the fiber orientation and the field direction 90, the magnetic field disturbances caused by composite rings are similar to those caused by non-ferromagnetic metals as Cu or Al. Due to their significantly lower susceptibility values, carbon HT fibers are to be preferred to carbon HM fibers with respect to their interaction with magnetic fields. Induction of significant macroscopic eddy currents for changes of the magnetic flux through the rings is not to be expected.\",\"PeriodicalId\":16971,\"journal\":{\"name\":\"Journal of Reinforced Plastics & Composites\",\"volume\":\"41 1\",\"pages\":\"131 - 146\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Reinforced Plastics & Composites\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/0731684405042954\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Reinforced Plastics & Composites","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/0731684405042954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-performance Composites for Applications in Medical Engineering: Susceptibility Artifacts in Magnetic Resonance Imaging
The interaction of carbon fiber/epoxy composite parts with the magnetic fields in magnetic resonance imaging (MRI) for medical diagnostics has been quantitatively estimated for the example of the Riechert stereotactic head ring. Rings from carbon/epoxy composite have been compared with rings from other materials with respect to their influence on the applied magnetic field. For a fiber volume fraction ’ 0.5 and an angle between the fiber orientation and the field direction 90, the magnetic field disturbances caused by composite rings are similar to those caused by non-ferromagnetic metals as Cu or Al. Due to their significantly lower susceptibility values, carbon HT fibers are to be preferred to carbon HM fibers with respect to their interaction with magnetic fields. Induction of significant macroscopic eddy currents for changes of the magnetic flux through the rings is not to be expected.