{"title":"6061-T6 A1/A12O3金属基复合材料在高变形速率下的力学响应","authors":"S. Yadav, D.R. Chichili, K.T. Ramesh","doi":"10.1016/0956-7151(95)00123-D","DOIUrl":null,"url":null,"abstract":"<div><p>The mechanical properties of a 6061-T6 aluminum alloy reinforced with a 20 vol.% fraction of alumina particles and of an unreinforced 6061-T6 alloy are studied over a range of strain rates (10<sup>-4</sup>to 6 x 10<sup>5</sup>s<sup>-1</sup>) using quasistatic compression, compression and torsion Kolsky Bars, and high strain rate pressure-shear plate impact. At a given strain rate the composite displays increased strength but essentially the same strain hardening as the matrix. However, the composite displays a stronger rate-sensitivity than does the unreinforced alloy at high rates of deformation (>10<sup>3</sup>s<sup>-1</sup>). The rate-sensitivity of the unreinforced alloy is shown to be largely the result of the imposed strain rate rather than of the rate history. For quasistatic deformations, a model proposed by Bao et al. (1991) describes the behavior of the composite fairly accurately given the behavior of the unreinforced alloy. This paper presents an extension of the model that is able to predict the dynamic behavior of the composite given the dynamic response of the monolithic alloy.</p></div>","PeriodicalId":100018,"journal":{"name":"Acta Metallurgica et Materialia","volume":"43 12","pages":"Pages 4453-4464"},"PeriodicalIF":0.0000,"publicationDate":"1995-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0956-7151(95)00123-D","citationCount":"139","resultStr":"{\"title\":\"The mechanical response of a 6061-T6 A1/A12O3 metal matrix composite at high rates of deformation\",\"authors\":\"S. Yadav, D.R. Chichili, K.T. Ramesh\",\"doi\":\"10.1016/0956-7151(95)00123-D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The mechanical properties of a 6061-T6 aluminum alloy reinforced with a 20 vol.% fraction of alumina particles and of an unreinforced 6061-T6 alloy are studied over a range of strain rates (10<sup>-4</sup>to 6 x 10<sup>5</sup>s<sup>-1</sup>) using quasistatic compression, compression and torsion Kolsky Bars, and high strain rate pressure-shear plate impact. At a given strain rate the composite displays increased strength but essentially the same strain hardening as the matrix. However, the composite displays a stronger rate-sensitivity than does the unreinforced alloy at high rates of deformation (>10<sup>3</sup>s<sup>-1</sup>). The rate-sensitivity of the unreinforced alloy is shown to be largely the result of the imposed strain rate rather than of the rate history. For quasistatic deformations, a model proposed by Bao et al. (1991) describes the behavior of the composite fairly accurately given the behavior of the unreinforced alloy. This paper presents an extension of the model that is able to predict the dynamic behavior of the composite given the dynamic response of the monolithic alloy.</p></div>\",\"PeriodicalId\":100018,\"journal\":{\"name\":\"Acta Metallurgica et Materialia\",\"volume\":\"43 12\",\"pages\":\"Pages 4453-4464\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0956-7151(95)00123-D\",\"citationCount\":\"139\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Metallurgica et Materialia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/095671519500123D\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Metallurgica et Materialia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/095671519500123D","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The mechanical response of a 6061-T6 A1/A12O3 metal matrix composite at high rates of deformation
The mechanical properties of a 6061-T6 aluminum alloy reinforced with a 20 vol.% fraction of alumina particles and of an unreinforced 6061-T6 alloy are studied over a range of strain rates (10-4to 6 x 105s-1) using quasistatic compression, compression and torsion Kolsky Bars, and high strain rate pressure-shear plate impact. At a given strain rate the composite displays increased strength but essentially the same strain hardening as the matrix. However, the composite displays a stronger rate-sensitivity than does the unreinforced alloy at high rates of deformation (>103s-1). The rate-sensitivity of the unreinforced alloy is shown to be largely the result of the imposed strain rate rather than of the rate history. For quasistatic deformations, a model proposed by Bao et al. (1991) describes the behavior of the composite fairly accurately given the behavior of the unreinforced alloy. This paper presents an extension of the model that is able to predict the dynamic behavior of the composite given the dynamic response of the monolithic alloy.