两个相反标志的准地转浅水涡旋斑块的稳定性和演化

IF 1.1 4区 地球科学 Q3 ASTRONOMY & ASTROPHYSICS
M. Jalali, D. Dritschel
{"title":"两个相反标志的准地转浅水涡旋斑块的稳定性和演化","authors":"M. Jalali, D. Dritschel","doi":"10.1080/03091929.2020.1756283","DOIUrl":null,"url":null,"abstract":"We examine the equilibrium forms, linear stability and nonlinear evolution of two patches having opposite-signed, uniform potential vorticity anomalies in a single-layer shallow-water flow, under the quasi-geostrophic approximation. We widely vary the vortex area ratio, the potential vorticity anomaly ratio, as well as the Rossby deformation length to unravel the full complexity of possible interactions in this system. Opposite-signed vortex interactions turn out to be far richer than their like-signed counterparts, comprehensively examined in a previous study (Jalali and Dritschel 2018, Geophys. Astrophys. Fluid Dyn. 2018, 112, 375). Unstable equilibria may evolve into a myriad of forms, many unsteady and aperiodic, and the original two vortex patches may break up into many patches which survive for long times, perhaps indefinitely.","PeriodicalId":56132,"journal":{"name":"Geophysical and Astrophysical Fluid Dynamics","volume":"43 1","pages":"561 - 587"},"PeriodicalIF":1.1000,"publicationDate":"2020-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Stability and evolution of two opposite-signed quasi-geostrophic shallow-water vortex patches\",\"authors\":\"M. Jalali, D. Dritschel\",\"doi\":\"10.1080/03091929.2020.1756283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We examine the equilibrium forms, linear stability and nonlinear evolution of two patches having opposite-signed, uniform potential vorticity anomalies in a single-layer shallow-water flow, under the quasi-geostrophic approximation. We widely vary the vortex area ratio, the potential vorticity anomaly ratio, as well as the Rossby deformation length to unravel the full complexity of possible interactions in this system. Opposite-signed vortex interactions turn out to be far richer than their like-signed counterparts, comprehensively examined in a previous study (Jalali and Dritschel 2018, Geophys. Astrophys. Fluid Dyn. 2018, 112, 375). Unstable equilibria may evolve into a myriad of forms, many unsteady and aperiodic, and the original two vortex patches may break up into many patches which survive for long times, perhaps indefinitely.\",\"PeriodicalId\":56132,\"journal\":{\"name\":\"Geophysical and Astrophysical Fluid Dynamics\",\"volume\":\"43 1\",\"pages\":\"561 - 587\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical and Astrophysical Fluid Dynamics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/03091929.2020.1756283\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical and Astrophysical Fluid Dynamics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/03091929.2020.1756283","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 11

摘要

在准地转近似下,研究了单层浅水流中具有相反符号、均匀位涡异常的两个斑块的平衡形式、线性稳定性和非线性演化。我们广泛地改变了涡旋面积比、位涡异常比以及罗斯比变形长度,以揭示该系统中可能相互作用的全部复杂性。在之前的一项研究中(Jalali和Dritschel 2018,《地球物理学》)全面研究了相反符号的涡旋相互作用,结果证明比它们的同类符号要丰富得多。12,54。流体动力学,2018,112,375)。不稳定的平衡可能演变成无数种形式,许多是不稳定的和非周期性的,最初的两个漩涡块可能分裂成许多块,这些块可以存活很长时间,也许是无限期的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability and evolution of two opposite-signed quasi-geostrophic shallow-water vortex patches
We examine the equilibrium forms, linear stability and nonlinear evolution of two patches having opposite-signed, uniform potential vorticity anomalies in a single-layer shallow-water flow, under the quasi-geostrophic approximation. We widely vary the vortex area ratio, the potential vorticity anomaly ratio, as well as the Rossby deformation length to unravel the full complexity of possible interactions in this system. Opposite-signed vortex interactions turn out to be far richer than their like-signed counterparts, comprehensively examined in a previous study (Jalali and Dritschel 2018, Geophys. Astrophys. Fluid Dyn. 2018, 112, 375). Unstable equilibria may evolve into a myriad of forms, many unsteady and aperiodic, and the original two vortex patches may break up into many patches which survive for long times, perhaps indefinitely.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical and Astrophysical Fluid Dynamics
Geophysical and Astrophysical Fluid Dynamics 地学天文-地球化学与地球物理
CiteScore
3.10
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: Geophysical and Astrophysical Fluid Dynamics exists for the publication of original research papers and short communications, occasional survey articles and conference reports on the fluid mechanics of the earth and planets, including oceans, atmospheres and interiors, and the fluid mechanics of the sun, stars and other astrophysical objects. In addition, their magnetohydrodynamic behaviours are investigated. Experimental, theoretical and numerical studies of rotating, stratified and convecting fluids of general interest to geophysicists and astrophysicists appear. Properly interpreted observational results are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信