多值3 × 3矩阵的一种新的分解

Pub Date : 2022-04-12 DOI:10.1142/s2010326322500289
A. Ammar, A. Jeribi, B. Saadaoui
{"title":"多值3 × 3矩阵的一种新的分解","authors":"A. Ammar, A. Jeribi, B. Saadaoui","doi":"10.1142/s2010326322500289","DOIUrl":null,"url":null,"abstract":"In this paper, a new concept for a [Formula: see text] block relation matrix is studied in a Banach space. It is shown that, under certain condition, we can investigate the Frobenius–Schur decomposition of relation matrices. Furthermore, we present some conditions which should allow the multivalued [Formula: see text] matrices linear operator to be closable.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new decomposition for multivalued 3 × 3 matrices\",\"authors\":\"A. Ammar, A. Jeribi, B. Saadaoui\",\"doi\":\"10.1142/s2010326322500289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new concept for a [Formula: see text] block relation matrix is studied in a Banach space. It is shown that, under certain condition, we can investigate the Frobenius–Schur decomposition of relation matrices. Furthermore, we present some conditions which should allow the multivalued [Formula: see text] matrices linear operator to be closable.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s2010326322500289\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s2010326322500289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了Banach空间中块关系矩阵的一个新概念。在一定条件下,我们可以研究关系矩阵的Frobenius-Schur分解。进一步,我们给出了允许多值[公式:见文本]矩阵线性算子可闭的一些条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A new decomposition for multivalued 3 × 3 matrices
In this paper, a new concept for a [Formula: see text] block relation matrix is studied in a Banach space. It is shown that, under certain condition, we can investigate the Frobenius–Schur decomposition of relation matrices. Furthermore, we present some conditions which should allow the multivalued [Formula: see text] matrices linear operator to be closable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信