预测复杂材料性质的量子算法

G. Schofield, Y. Saad, J. Chelikowsky
{"title":"预测复杂材料性质的量子算法","authors":"G. Schofield, Y. Saad, J. Chelikowsky","doi":"10.1145/2335755.2335820","DOIUrl":null,"url":null,"abstract":"A central goal in computational materials science is to find efficient methods for solving the Kohn-Sham equation. The realization of this goal would allow one to predict properties such as phase stability, structure and optical and dielectric properties for a wide variety of materials. Typically, a solution of the Kohn-Sham equation requires computing a set of low-lying eigenpairs. Standard methods for computing such eigenpairs require two procedures: (a) maintaining the orthogonality of an approximation space, and (b) forming approximate eigenpairs with the Rayleigh-Ritz method. These two procedures scale cubically with the number of desired eigenpairs. Recently, we presented a method, applicable to any large Hermitian eigenproblem, by which the spectrum is partitioned among distinct groups of processors. This \"divide and conquer\" approach serves as a parallelization scheme at the level of the solver, making it compatible with existing schemes that parallelize at a physical level and at the level of primitive operations, e.g., matrix-vector multiplication. In addition, among all processor sets, the size of any approximation subspace is reduced, thereby reducing the cost of orthogonalization and the Rayleigh-Ritz method. We will address the key aspects of the algorithm, its implementation in real space, and demonstrate the nature of the algorithm by computing the electronic structure of a metal-semiconductor interface.","PeriodicalId":93364,"journal":{"name":"Proceedings of XSEDE16 : Diversity, Big Data, and Science at Scale : July 17-21, 2016, Intercontinental Miami Hotel, Miami, Florida, USA. Conference on Extreme Science and Engineering Discovery Environment (5th : 2016 : Miami, Fla.)","volume":"17 1","pages":"24:1-24:8"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Quantum algorithms for predicting the properties of complex materials\",\"authors\":\"G. Schofield, Y. Saad, J. Chelikowsky\",\"doi\":\"10.1145/2335755.2335820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A central goal in computational materials science is to find efficient methods for solving the Kohn-Sham equation. The realization of this goal would allow one to predict properties such as phase stability, structure and optical and dielectric properties for a wide variety of materials. Typically, a solution of the Kohn-Sham equation requires computing a set of low-lying eigenpairs. Standard methods for computing such eigenpairs require two procedures: (a) maintaining the orthogonality of an approximation space, and (b) forming approximate eigenpairs with the Rayleigh-Ritz method. These two procedures scale cubically with the number of desired eigenpairs. Recently, we presented a method, applicable to any large Hermitian eigenproblem, by which the spectrum is partitioned among distinct groups of processors. This \\\"divide and conquer\\\" approach serves as a parallelization scheme at the level of the solver, making it compatible with existing schemes that parallelize at a physical level and at the level of primitive operations, e.g., matrix-vector multiplication. In addition, among all processor sets, the size of any approximation subspace is reduced, thereby reducing the cost of orthogonalization and the Rayleigh-Ritz method. We will address the key aspects of the algorithm, its implementation in real space, and demonstrate the nature of the algorithm by computing the electronic structure of a metal-semiconductor interface.\",\"PeriodicalId\":93364,\"journal\":{\"name\":\"Proceedings of XSEDE16 : Diversity, Big Data, and Science at Scale : July 17-21, 2016, Intercontinental Miami Hotel, Miami, Florida, USA. Conference on Extreme Science and Engineering Discovery Environment (5th : 2016 : Miami, Fla.)\",\"volume\":\"17 1\",\"pages\":\"24:1-24:8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of XSEDE16 : Diversity, Big Data, and Science at Scale : July 17-21, 2016, Intercontinental Miami Hotel, Miami, Florida, USA. Conference on Extreme Science and Engineering Discovery Environment (5th : 2016 : Miami, Fla.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2335755.2335820\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of XSEDE16 : Diversity, Big Data, and Science at Scale : July 17-21, 2016, Intercontinental Miami Hotel, Miami, Florida, USA. Conference on Extreme Science and Engineering Discovery Environment (5th : 2016 : Miami, Fla.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2335755.2335820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

计算材料科学的一个中心目标是找到求解Kohn-Sham方程的有效方法。这一目标的实现将使人们能够预测各种材料的相位稳定性、结构、光学和介电性质等特性。通常,Kohn-Sham方程的解需要计算一组低洼特征对。计算这种特征对的标准方法需要两个步骤:(a)保持近似空间的正交性,以及(b)用瑞利-里兹方法形成近似特征对。这两个过程与所需特征对的数量成三次比例。最近,我们提出了一种适用于任何大型厄米特特征问题的方法,该方法可以在不同的处理器群之间划分频谱。这种“分而治之”的方法作为求解器级别的并行化方案,使其与现有的在物理层和基本操作(例如矩阵-向量乘法)级别并行化的方案兼容。此外,在所有处理器集中,减小了任何近似子空间的大小,从而降低了正交化和瑞利-里兹方法的成本。我们将讨论算法的关键方面,它在真实空间中的实现,并通过计算金属半导体界面的电子结构来演示算法的本质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum algorithms for predicting the properties of complex materials
A central goal in computational materials science is to find efficient methods for solving the Kohn-Sham equation. The realization of this goal would allow one to predict properties such as phase stability, structure and optical and dielectric properties for a wide variety of materials. Typically, a solution of the Kohn-Sham equation requires computing a set of low-lying eigenpairs. Standard methods for computing such eigenpairs require two procedures: (a) maintaining the orthogonality of an approximation space, and (b) forming approximate eigenpairs with the Rayleigh-Ritz method. These two procedures scale cubically with the number of desired eigenpairs. Recently, we presented a method, applicable to any large Hermitian eigenproblem, by which the spectrum is partitioned among distinct groups of processors. This "divide and conquer" approach serves as a parallelization scheme at the level of the solver, making it compatible with existing schemes that parallelize at a physical level and at the level of primitive operations, e.g., matrix-vector multiplication. In addition, among all processor sets, the size of any approximation subspace is reduced, thereby reducing the cost of orthogonalization and the Rayleigh-Ritz method. We will address the key aspects of the algorithm, its implementation in real space, and demonstrate the nature of the algorithm by computing the electronic structure of a metal-semiconductor interface.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信