组合公钥密码系统的密码分析

IF 0.1 Q4 MATHEMATICS
V. Roman’kov
{"title":"组合公钥密码系统的密码分析","authors":"V. Roman’kov","doi":"10.1515/gcc-2017-0013","DOIUrl":null,"url":null,"abstract":"Abstract We discuss pitfalls in the security of the combinatorial public key cryptosystem based on Nielsen transformations inspired by the ElGamal cryptosystem proposed by Fine, Moldenhauer and Rosenberger. We introduce three different types of attacks to possible combinatorial public key encryption schemes and apply these attacks to the scheme corresponding to the cryptosystem under discussion. As a result of our observation, we show that under some natural assumptions the scheme is vulnerable to at least one of the proposed attacks.","PeriodicalId":41862,"journal":{"name":"Groups Complexity Cryptology","volume":"39 1","pages":"125 - 135"},"PeriodicalIF":0.1000,"publicationDate":"2017-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Cryptanalysis of a combinatorial public key cryptosystem\",\"authors\":\"V. Roman’kov\",\"doi\":\"10.1515/gcc-2017-0013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We discuss pitfalls in the security of the combinatorial public key cryptosystem based on Nielsen transformations inspired by the ElGamal cryptosystem proposed by Fine, Moldenhauer and Rosenberger. We introduce three different types of attacks to possible combinatorial public key encryption schemes and apply these attacks to the scheme corresponding to the cryptosystem under discussion. As a result of our observation, we show that under some natural assumptions the scheme is vulnerable to at least one of the proposed attacks.\",\"PeriodicalId\":41862,\"journal\":{\"name\":\"Groups Complexity Cryptology\",\"volume\":\"39 1\",\"pages\":\"125 - 135\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2017-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groups Complexity Cryptology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/gcc-2017-0013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complexity Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gcc-2017-0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 14

摘要

摘要本文讨论了受Fine、Moldenhauer和Rosenberger提出的ElGamal密码系统启发的基于Nielsen变换的组合公钥密码系统的安全性缺陷。我们对可能的组合公钥加密方案介绍了三种不同类型的攻击,并将这些攻击应用于所讨论的密码系统对应的方案。我们的观察结果表明,在一些自然假设下,该方案容易受到至少一种所提出的攻击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cryptanalysis of a combinatorial public key cryptosystem
Abstract We discuss pitfalls in the security of the combinatorial public key cryptosystem based on Nielsen transformations inspired by the ElGamal cryptosystem proposed by Fine, Moldenhauer and Rosenberger. We introduce three different types of attacks to possible combinatorial public key encryption schemes and apply these attacks to the scheme corresponding to the cryptosystem under discussion. As a result of our observation, we show that under some natural assumptions the scheme is vulnerable to at least one of the proposed attacks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信