皮肤镜下色素性皮肤病变彩色图像边界不规则性的测定。

J. Jaworek-Korjakowska, R. Tadeusiewicz
{"title":"皮肤镜下色素性皮肤病变彩色图像边界不规则性的测定。","authors":"J. Jaworek-Korjakowska, R. Tadeusiewicz","doi":"10.1109/EMBC.2015.7318940","DOIUrl":null,"url":null,"abstract":"Malignant melanoma, which is the most dangerous type of skin cancer, is commonly diagnosed in all people, regardless of age, gender, or race. In the last several years an increasing melanoma incidence and mortality rate has been observed worldwide. In this research we present a new approach to the detection and classification of border irregularity, one of the major parameter in a widely used diagnostic algorithm ABCD rule of dermoscopy. Accurate assessment of irregular borders is clinically important due to a significantly different occurrence in benign and malignant skin lesions. In this paper we describe a complex algorithm containing following steps: image enhancement, lesion segmentation, border irregularity detection as well as classification. The algorithm has been tested on 300 dermoscopic images and achieved a detection of 79% and classification accuracy of 90%. Compared to state-of-the-art, we obtain improved classification accuracy.","PeriodicalId":72689,"journal":{"name":"Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference","volume":"42 1","pages":"2665-8"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of border irregularity in dermoscopic color images of pigmented skin lesions.\",\"authors\":\"J. Jaworek-Korjakowska, R. Tadeusiewicz\",\"doi\":\"10.1109/EMBC.2015.7318940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Malignant melanoma, which is the most dangerous type of skin cancer, is commonly diagnosed in all people, regardless of age, gender, or race. In the last several years an increasing melanoma incidence and mortality rate has been observed worldwide. In this research we present a new approach to the detection and classification of border irregularity, one of the major parameter in a widely used diagnostic algorithm ABCD rule of dermoscopy. Accurate assessment of irregular borders is clinically important due to a significantly different occurrence in benign and malignant skin lesions. In this paper we describe a complex algorithm containing following steps: image enhancement, lesion segmentation, border irregularity detection as well as classification. The algorithm has been tested on 300 dermoscopic images and achieved a detection of 79% and classification accuracy of 90%. Compared to state-of-the-art, we obtain improved classification accuracy.\",\"PeriodicalId\":72689,\"journal\":{\"name\":\"Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference\",\"volume\":\"42 1\",\"pages\":\"2665-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMBC.2015.7318940\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBC.2015.7318940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

恶性黑色素瘤是最危险的皮肤癌类型,无论年龄、性别或种族,所有人都可以诊断出恶性黑色素瘤。在过去几年中,全世界的黑色素瘤发病率和死亡率都在上升。在本研究中,我们提出了一种新的方法来检测和分类边界不规则,边界不规则是广泛使用的皮肤镜诊断算法ABCD规则的主要参数之一。由于良性和恶性皮肤病变的发生率明显不同,准确评估不规则边界在临床上很重要。本文描述了一种复杂的图像增强算法,包括图像增强、病灶分割、边缘不规则检测和分类。该算法在300张皮肤镜图像上进行了测试,检测率达到79%,分类准确率达到90%。与最先进的技术相比,我们获得了更高的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determination of border irregularity in dermoscopic color images of pigmented skin lesions.
Malignant melanoma, which is the most dangerous type of skin cancer, is commonly diagnosed in all people, regardless of age, gender, or race. In the last several years an increasing melanoma incidence and mortality rate has been observed worldwide. In this research we present a new approach to the detection and classification of border irregularity, one of the major parameter in a widely used diagnostic algorithm ABCD rule of dermoscopy. Accurate assessment of irregular borders is clinically important due to a significantly different occurrence in benign and malignant skin lesions. In this paper we describe a complex algorithm containing following steps: image enhancement, lesion segmentation, border irregularity detection as well as classification. The algorithm has been tested on 300 dermoscopic images and achieved a detection of 79% and classification accuracy of 90%. Compared to state-of-the-art, we obtain improved classification accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信