{"title":"状态切换跳跃扩散的Feynman-Kac公式及其应用","authors":"Chao Zhu, G. Yin, Nicholas A. Baran","doi":"10.1080/17442508.2015.1019884","DOIUrl":null,"url":null,"abstract":"This work develops Feynman–Kac formulas for a class of regime-switching jump diffusion processes, in which the jump part is driven by a Poisson random measure associated with a general Lévy process and the switching part depends on the jump diffusion processes. Under broad conditions, the connections of such stochastic processes and the corresponding partial integro-differential equations are established. Related initial, terminal and boundary value problems are also treated. Moreover, based on weak convergence of probability measures, it is demonstrated that a sequence of random variables related to the regime-switching jump diffusion process converges in distribution to the arcsine law.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Feynman–Kac formulas for regime-switching jump diffusions and their applications\",\"authors\":\"Chao Zhu, G. Yin, Nicholas A. Baran\",\"doi\":\"10.1080/17442508.2015.1019884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work develops Feynman–Kac formulas for a class of regime-switching jump diffusion processes, in which the jump part is driven by a Poisson random measure associated with a general Lévy process and the switching part depends on the jump diffusion processes. Under broad conditions, the connections of such stochastic processes and the corresponding partial integro-differential equations are established. Related initial, terminal and boundary value problems are also treated. Moreover, based on weak convergence of probability measures, it is demonstrated that a sequence of random variables related to the regime-switching jump diffusion process converges in distribution to the arcsine law.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2015-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/17442508.2015.1019884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17442508.2015.1019884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Feynman–Kac formulas for regime-switching jump diffusions and their applications
This work develops Feynman–Kac formulas for a class of regime-switching jump diffusion processes, in which the jump part is driven by a Poisson random measure associated with a general Lévy process and the switching part depends on the jump diffusion processes. Under broad conditions, the connections of such stochastic processes and the corresponding partial integro-differential equations are established. Related initial, terminal and boundary value problems are also treated. Moreover, based on weak convergence of probability measures, it is demonstrated that a sequence of random variables related to the regime-switching jump diffusion process converges in distribution to the arcsine law.