(d)比例因子作为H-1核磁共振化学位移计算的令人满意的成本-效益比

Evani Ferreira Cardoso, A. Albuquerque, A. M. J. C. Neto, G. S. Mota, F. L. Costa
{"title":"(d)比例因子作为H-1核磁共振化学位移计算的令人满意的成本-效益比","authors":"Evani Ferreira Cardoso, A. Albuquerque, A. M. J. C. Neto, G. S. Mota, F. L. Costa","doi":"10.1166/ASEM.2020.2652","DOIUrl":null,"url":null,"abstract":"Recently, several users of nuclear magnetic resonance spectroscopy have considered the employing of quantum chemical methods in the spectra predictions, since these methods are now well developed and implemented in popular program packages. Based on the experience of our group, the\n purpose of this article is to test the feasibility in the generating of a scaling factor for hydrogen-1 chemical shifts calculations at the GIAO-mPW1PW91/6-31G(d)//mPW1PW91/6-31G(d) level of theory in gas phase to assist in the determination of organic molecule structures. It is important\n to highlight that our level of theory requires low computational time, consequently it can be used even in personal computers. We used 80 organic molecules to yield a scaling factor equation: scaled chemical is equal to 0.98 (calculated chemical shift)+0.09, (calculated tetramethylsilane value\n of 32.26 parts per million). The test molecule is oleana-12(13), 15(16)-dienoic acid, a triterpene with a complex structure, and with various biological and pharmacological applications. The error values of root mean square were slightly higher for the triterpene molecule compared to the 80\n molecules (1.40 percent and 1.53 percent, respectively. We believe that this was due to the greater flexibility of the triterpene molecule. Thus, taking into consideration the cost-effectiveness ratio, the 1H NMR calculations at the GIAO-mPW1PW91/6-31G(d)//mPW1PW91/6-31G(d) level of theory\n have produced promissory results.","PeriodicalId":7213,"journal":{"name":"Advanced Science, Engineering and Medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Gauge-Including-Atomic-Orbitals-mPW1PW91/6-31G(d) Scaling Factor as a Satisfactory Cost-Effectiveness Ratio for H-1 Nuclear Magnetic Resonance Chemical Shift Calculations\",\"authors\":\"Evani Ferreira Cardoso, A. Albuquerque, A. M. J. C. Neto, G. S. Mota, F. L. Costa\",\"doi\":\"10.1166/ASEM.2020.2652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, several users of nuclear magnetic resonance spectroscopy have considered the employing of quantum chemical methods in the spectra predictions, since these methods are now well developed and implemented in popular program packages. Based on the experience of our group, the\\n purpose of this article is to test the feasibility in the generating of a scaling factor for hydrogen-1 chemical shifts calculations at the GIAO-mPW1PW91/6-31G(d)//mPW1PW91/6-31G(d) level of theory in gas phase to assist in the determination of organic molecule structures. It is important\\n to highlight that our level of theory requires low computational time, consequently it can be used even in personal computers. We used 80 organic molecules to yield a scaling factor equation: scaled chemical is equal to 0.98 (calculated chemical shift)+0.09, (calculated tetramethylsilane value\\n of 32.26 parts per million). The test molecule is oleana-12(13), 15(16)-dienoic acid, a triterpene with a complex structure, and with various biological and pharmacological applications. The error values of root mean square were slightly higher for the triterpene molecule compared to the 80\\n molecules (1.40 percent and 1.53 percent, respectively. We believe that this was due to the greater flexibility of the triterpene molecule. Thus, taking into consideration the cost-effectiveness ratio, the 1H NMR calculations at the GIAO-mPW1PW91/6-31G(d)//mPW1PW91/6-31G(d) level of theory\\n have produced promissory results.\",\"PeriodicalId\":7213,\"journal\":{\"name\":\"Advanced Science, Engineering and Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science, Engineering and Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1166/ASEM.2020.2652\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science, Engineering and Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/ASEM.2020.2652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

最近,一些核磁共振波谱的用户已经考虑在光谱预测中使用量子化学方法,因为这些方法现在已经很好地发展并在流行的程序包中实现了。根据我们小组的经验,本文的目的是测试在GIAO-mPW1PW91/6-31G(d)//mPW1PW91/6-31G(d)气相理论水平上生成氢-1化学位移计算的比例因子的可行性,以协助确定有机分子结构。重要的是要强调,我们的理论水平需要较低的计算时间,因此它甚至可以在个人计算机中使用。我们用80个有机分子得到一个比例因子方程:缩放化学等于0.98(计算化学位移)+0.09,(计算四甲基硅烷值为32.26 ppm)。测试分子是齐墩果酸-12(13),15(16)-二烯酸,一种结构复杂的三萜,具有多种生物学和药理学应用。与80个分子相比,三萜分子的均方根误差值略高,分别为1.40%和1.53%。我们认为这是由于三萜分子具有更大的灵活性。因此,考虑到成本效益比,在GIAO-mPW1PW91/6-31G(d)//mPW1PW91/6-31G(d)理论水平上的1H NMR计算产生了有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gauge-Including-Atomic-Orbitals-mPW1PW91/6-31G(d) Scaling Factor as a Satisfactory Cost-Effectiveness Ratio for H-1 Nuclear Magnetic Resonance Chemical Shift Calculations
Recently, several users of nuclear magnetic resonance spectroscopy have considered the employing of quantum chemical methods in the spectra predictions, since these methods are now well developed and implemented in popular program packages. Based on the experience of our group, the purpose of this article is to test the feasibility in the generating of a scaling factor for hydrogen-1 chemical shifts calculations at the GIAO-mPW1PW91/6-31G(d)//mPW1PW91/6-31G(d) level of theory in gas phase to assist in the determination of organic molecule structures. It is important to highlight that our level of theory requires low computational time, consequently it can be used even in personal computers. We used 80 organic molecules to yield a scaling factor equation: scaled chemical is equal to 0.98 (calculated chemical shift)+0.09, (calculated tetramethylsilane value of 32.26 parts per million). The test molecule is oleana-12(13), 15(16)-dienoic acid, a triterpene with a complex structure, and with various biological and pharmacological applications. The error values of root mean square were slightly higher for the triterpene molecule compared to the 80 molecules (1.40 percent and 1.53 percent, respectively. We believe that this was due to the greater flexibility of the triterpene molecule. Thus, taking into consideration the cost-effectiveness ratio, the 1H NMR calculations at the GIAO-mPW1PW91/6-31G(d)//mPW1PW91/6-31G(d) level of theory have produced promissory results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信