高斯函数从不极化双曲抛物面的Strichartz不等式

E. Carneiro, L. Oliveira, Mateus Sousa
{"title":"高斯函数从不极化双曲抛物面的Strichartz不等式","authors":"E. Carneiro, L. Oliveira, Mateus Sousa","doi":"10.1090/proc/15782","DOIUrl":null,"url":null,"abstract":"For $\\xi = (\\xi_1, \\xi_2, \\ldots, \\xi_d) \\in \\mathbb{R}^d$ let $Q(\\xi) := \\sum_{j=1}^d \\sigma_j \\xi_j^2$ be a quadratic form with signs $\\sigma_j \\in \\{\\pm1\\}$ not all equal. Let $S \\subset \\mathbb{R}^{d+1}$ be the hyperbolic paraboloid given by $S = \\big\\{(\\xi, \\tau) \\in \\mathbb{R}^{d}\\times \\mathbb{R} \\ : \\ \\tau = Q(\\xi)\\big\\}$. In this note we prove that Gaussians never extremize an $L^p(\\mathbb{R}^d) \\to L^{q}(\\mathbb{R}^{d+1})$ Fourier extension inequality associated to this surface.","PeriodicalId":8451,"journal":{"name":"arXiv: Classical Analysis and ODEs","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Gaussians never extremize Strichartz inequalities for hyperbolic paraboloids\",\"authors\":\"E. Carneiro, L. Oliveira, Mateus Sousa\",\"doi\":\"10.1090/proc/15782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For $\\\\xi = (\\\\xi_1, \\\\xi_2, \\\\ldots, \\\\xi_d) \\\\in \\\\mathbb{R}^d$ let $Q(\\\\xi) := \\\\sum_{j=1}^d \\\\sigma_j \\\\xi_j^2$ be a quadratic form with signs $\\\\sigma_j \\\\in \\\\{\\\\pm1\\\\}$ not all equal. Let $S \\\\subset \\\\mathbb{R}^{d+1}$ be the hyperbolic paraboloid given by $S = \\\\big\\\\{(\\\\xi, \\\\tau) \\\\in \\\\mathbb{R}^{d}\\\\times \\\\mathbb{R} \\\\ : \\\\ \\\\tau = Q(\\\\xi)\\\\big\\\\}$. In this note we prove that Gaussians never extremize an $L^p(\\\\mathbb{R}^d) \\\\to L^{q}(\\\\mathbb{R}^{d+1})$ Fourier extension inequality associated to this surface.\",\"PeriodicalId\":8451,\"journal\":{\"name\":\"arXiv: Classical Analysis and ODEs\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/15782\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/proc/15782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

对于$\xi = (\xi_1, \xi_2, \ldots, \xi_d) \in \mathbb{R}^d$,设$Q(\xi) := \sum_{j=1}^d \sigma_j \xi_j^2$为二次型,其符号$\sigma_j \in \{\pm1\}$不都相等。设$S \subset \mathbb{R}^{d+1}$为$S = \big\{(\xi, \tau) \in \mathbb{R}^{d}\times \mathbb{R} \ : \ \tau = Q(\xi)\big\}$给出的双曲抛物面。在这篇笔记中,我们证明高斯函数从不极化与这个曲面相关的$L^p(\mathbb{R}^d) \to L^{q}(\mathbb{R}^{d+1})$傅立叶扩展不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gaussians never extremize Strichartz inequalities for hyperbolic paraboloids
For $\xi = (\xi_1, \xi_2, \ldots, \xi_d) \in \mathbb{R}^d$ let $Q(\xi) := \sum_{j=1}^d \sigma_j \xi_j^2$ be a quadratic form with signs $\sigma_j \in \{\pm1\}$ not all equal. Let $S \subset \mathbb{R}^{d+1}$ be the hyperbolic paraboloid given by $S = \big\{(\xi, \tau) \in \mathbb{R}^{d}\times \mathbb{R} \ : \ \tau = Q(\xi)\big\}$. In this note we prove that Gaussians never extremize an $L^p(\mathbb{R}^d) \to L^{q}(\mathbb{R}^{d+1})$ Fourier extension inequality associated to this surface.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信