{"title":"加氢条件下慢速率拉伸剪切试验快速评价高抗拉强度钢板点焊抗氢脆性能","authors":"G. Kitahara, H. Matsuoka, T. Asada","doi":"10.2320/jinstmet.j2020046","DOIUrl":null,"url":null,"abstract":"Automobile manufacturers are accelerating adoption of spot welding of Advanced High-Strength-Steels (AHSS) sheets to reduce weight of automobile bodies. Rapid evaluation of the hydrogen embrittlement (HE) resistance for the spot-welds of AHSS sheets is required, since it is worried that the HE resistance of the nugget will deteriorate compared to the base metal due to the di ff erence in microstructure caused by rapid cooling and solidi fi cation during spot welding. However, evaluation of the HE resistance for the spot-welds has not been established. In this study, we prepared spot-welded specimens using AHSS sheets and performed tensile shear tests with varying tensile rates under hydrogen charging to evaluate the relationship between di ff usible hydrogen content and tensile shear strength. As a result, the tensile shear strength of spot welds decreased as the amount of di ff usible hydrogen increased. The quasi-cleavage fracture surface and intergranular fracture surface were observed at the nugget and inside the crack generated at the nugget-heat a ff ected zone interface. Furthermore, as the results of crack growth behavior and hydrogen thermal desorption spectroscopy analysis, hydrogen embrittlement in spot welds can be attributed to the stress-induced di ff usion of hydrogen and the hydrogen trapped in dislocation and vacancy clusters at crack tips. [doi:10.2320 /","PeriodicalId":17322,"journal":{"name":"Journal of the Japan Institute of Metals and Materials","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid Evaluation of Hydrogen Embrittlement Resistance for Spot-Welds of High Tensile Strength Steel Sheet by Slow Rate Tensile Shear Test under Hydrogen Charging Conditions\",\"authors\":\"G. Kitahara, H. Matsuoka, T. Asada\",\"doi\":\"10.2320/jinstmet.j2020046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automobile manufacturers are accelerating adoption of spot welding of Advanced High-Strength-Steels (AHSS) sheets to reduce weight of automobile bodies. Rapid evaluation of the hydrogen embrittlement (HE) resistance for the spot-welds of AHSS sheets is required, since it is worried that the HE resistance of the nugget will deteriorate compared to the base metal due to the di ff erence in microstructure caused by rapid cooling and solidi fi cation during spot welding. However, evaluation of the HE resistance for the spot-welds has not been established. In this study, we prepared spot-welded specimens using AHSS sheets and performed tensile shear tests with varying tensile rates under hydrogen charging to evaluate the relationship between di ff usible hydrogen content and tensile shear strength. As a result, the tensile shear strength of spot welds decreased as the amount of di ff usible hydrogen increased. The quasi-cleavage fracture surface and intergranular fracture surface were observed at the nugget and inside the crack generated at the nugget-heat a ff ected zone interface. Furthermore, as the results of crack growth behavior and hydrogen thermal desorption spectroscopy analysis, hydrogen embrittlement in spot welds can be attributed to the stress-induced di ff usion of hydrogen and the hydrogen trapped in dislocation and vacancy clusters at crack tips. [doi:10.2320 /\",\"PeriodicalId\":17322,\"journal\":{\"name\":\"Journal of the Japan Institute of Metals and Materials\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Japan Institute of Metals and Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2320/jinstmet.j2020046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Japan Institute of Metals and Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2320/jinstmet.j2020046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rapid Evaluation of Hydrogen Embrittlement Resistance for Spot-Welds of High Tensile Strength Steel Sheet by Slow Rate Tensile Shear Test under Hydrogen Charging Conditions
Automobile manufacturers are accelerating adoption of spot welding of Advanced High-Strength-Steels (AHSS) sheets to reduce weight of automobile bodies. Rapid evaluation of the hydrogen embrittlement (HE) resistance for the spot-welds of AHSS sheets is required, since it is worried that the HE resistance of the nugget will deteriorate compared to the base metal due to the di ff erence in microstructure caused by rapid cooling and solidi fi cation during spot welding. However, evaluation of the HE resistance for the spot-welds has not been established. In this study, we prepared spot-welded specimens using AHSS sheets and performed tensile shear tests with varying tensile rates under hydrogen charging to evaluate the relationship between di ff usible hydrogen content and tensile shear strength. As a result, the tensile shear strength of spot welds decreased as the amount of di ff usible hydrogen increased. The quasi-cleavage fracture surface and intergranular fracture surface were observed at the nugget and inside the crack generated at the nugget-heat a ff ected zone interface. Furthermore, as the results of crack growth behavior and hydrogen thermal desorption spectroscopy analysis, hydrogen embrittlement in spot welds can be attributed to the stress-induced di ff usion of hydrogen and the hydrogen trapped in dislocation and vacancy clusters at crack tips. [doi:10.2320 /