Srikanth Bommaraveni, T. Vu, Satyanarayana Vuppala, S. Chatzinotas, B. Ottersten
{"title":"基于委员会查询的边缘缓存动态内容流行度学习","authors":"Srikanth Bommaraveni, T. Vu, Satyanarayana Vuppala, S. Chatzinotas, B. Ottersten","doi":"10.1109/IEEECONF44664.2019.9048947","DOIUrl":null,"url":null,"abstract":"Edge caching has received much attention as an effective solution to face the stringent latency requirements in 5G networks due to the proliferation of handset devices as well as data-hungry applications. One of the challenges in edge caching systems is to optimally cache strategic contents to maximize the percentage of total requests served by the edge caches. To enable the optimal caching strategy, we propose an Active Learning approach (AL) to learn and design an accurate content request prediction algorithm. Specifically, we use an AL based Query-by-committee (QBC) matrix completion algorithm with a strategy of querying the most informative missing entries of the content popularity matrix. The proposed AL framework leverage’s the trade-off between exploration and exploitation of the network, and learn the user’s preferences by posing queries or recommendations. Later, it exploits the known information to maximize the system performance. The effectiveness of proposed AL based QBC content learning algorithm is demonstrated via numerical results.","PeriodicalId":6684,"journal":{"name":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","volume":"14 1","pages":"301-305"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Active Content Popularity Learning via Query-by-Committee for Edge Caching\",\"authors\":\"Srikanth Bommaraveni, T. Vu, Satyanarayana Vuppala, S. Chatzinotas, B. Ottersten\",\"doi\":\"10.1109/IEEECONF44664.2019.9048947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Edge caching has received much attention as an effective solution to face the stringent latency requirements in 5G networks due to the proliferation of handset devices as well as data-hungry applications. One of the challenges in edge caching systems is to optimally cache strategic contents to maximize the percentage of total requests served by the edge caches. To enable the optimal caching strategy, we propose an Active Learning approach (AL) to learn and design an accurate content request prediction algorithm. Specifically, we use an AL based Query-by-committee (QBC) matrix completion algorithm with a strategy of querying the most informative missing entries of the content popularity matrix. The proposed AL framework leverage’s the trade-off between exploration and exploitation of the network, and learn the user’s preferences by posing queries or recommendations. Later, it exploits the known information to maximize the system performance. The effectiveness of proposed AL based QBC content learning algorithm is demonstrated via numerical results.\",\"PeriodicalId\":6684,\"journal\":{\"name\":\"2019 53rd Asilomar Conference on Signals, Systems, and Computers\",\"volume\":\"14 1\",\"pages\":\"301-305\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 53rd Asilomar Conference on Signals, Systems, and Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEEECONF44664.2019.9048947\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF44664.2019.9048947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Active Content Popularity Learning via Query-by-Committee for Edge Caching
Edge caching has received much attention as an effective solution to face the stringent latency requirements in 5G networks due to the proliferation of handset devices as well as data-hungry applications. One of the challenges in edge caching systems is to optimally cache strategic contents to maximize the percentage of total requests served by the edge caches. To enable the optimal caching strategy, we propose an Active Learning approach (AL) to learn and design an accurate content request prediction algorithm. Specifically, we use an AL based Query-by-committee (QBC) matrix completion algorithm with a strategy of querying the most informative missing entries of the content popularity matrix. The proposed AL framework leverage’s the trade-off between exploration and exploitation of the network, and learn the user’s preferences by posing queries or recommendations. Later, it exploits the known information to maximize the system performance. The effectiveness of proposed AL based QBC content learning algorithm is demonstrated via numerical results.