一种新的全局优化方法

A. Kosolap
{"title":"一种新的全局优化方法","authors":"A. Kosolap","doi":"10.1051/proc/202171121","DOIUrl":null,"url":null,"abstract":"This paper presents a new method for global optimization. We use exact quadratic regularization for the transformation of the multimodal problems to a problem of a maximum norm vector on a convex set. Quadratic regularization often allows you to convert a multimodal problem into a unimodal problem. For this, we use the shift of the feasible region along the bisector of the positive orthant. We use only local search (primal-dual interior point method) and a dichotomy method for search of a global extremum in the multimodal problems. The comparative numerical experiments have shown that this method is very efficient and promising.","PeriodicalId":53260,"journal":{"name":"ESAIM Proceedings and Surveys","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A new method for global optimization\",\"authors\":\"A. Kosolap\",\"doi\":\"10.1051/proc/202171121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new method for global optimization. We use exact quadratic regularization for the transformation of the multimodal problems to a problem of a maximum norm vector on a convex set. Quadratic regularization often allows you to convert a multimodal problem into a unimodal problem. For this, we use the shift of the feasible region along the bisector of the positive orthant. We use only local search (primal-dual interior point method) and a dichotomy method for search of a global extremum in the multimodal problems. The comparative numerical experiments have shown that this method is very efficient and promising.\",\"PeriodicalId\":53260,\"journal\":{\"name\":\"ESAIM Proceedings and Surveys\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ESAIM Proceedings and Surveys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/proc/202171121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESAIM Proceedings and Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/proc/202171121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种新的全局优化方法。利用精确二次正则化将多模态问题转化为凸集上的最大范数向量问题。二次正则化通常允许您将多模态问题转换为单模态问题。为此,我们利用可行域沿正正交线平分线的位移。我们只用局部搜索(原始对偶内点法)和二分法来搜索多模态问题的全局极值。数值对比实验表明,该方法是非常有效的,具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new method for global optimization
This paper presents a new method for global optimization. We use exact quadratic regularization for the transformation of the multimodal problems to a problem of a maximum norm vector on a convex set. Quadratic regularization often allows you to convert a multimodal problem into a unimodal problem. For this, we use the shift of the feasible region along the bisector of the positive orthant. We use only local search (primal-dual interior point method) and a dichotomy method for search of a global extremum in the multimodal problems. The comparative numerical experiments have shown that this method is very efficient and promising.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信