{"title":"扩散SIS模型的定量强唯一延拓性质","authors":"Taige Wang, Dihong Xu","doi":"10.3934/dcdss.2022024","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>This article is concerned with a strong unique continuation property of solutions for a diffusive SIS (Susceptible - Infected - Susceptible, or SI) model, which belongs to a type of observability inequalities in a time interval <inline-formula><tex-math id=\"M1\">\\begin{document}$ [0, T] $\\end{document}</tex-math></inline-formula>. That is, if one can observe solution on a convex and connected bounded open set <inline-formula><tex-math id=\"M2\">\\begin{document}$ \\omega $\\end{document}</tex-math></inline-formula> in a bounded domain <inline-formula><tex-math id=\"M3\">\\begin{document}$ \\Omega $\\end{document}</tex-math></inline-formula> at time <inline-formula><tex-math id=\"M4\">\\begin{document}$ t = T $\\end{document}</tex-math></inline-formula>, then the norms of solution on <inline-formula><tex-math id=\"M5\">\\begin{document}$ [0,T) $\\end{document}</tex-math></inline-formula> on <inline-formula><tex-math id=\"M6\">\\begin{document}$ \\Omega $\\end{document}</tex-math></inline-formula> are observable. In our discussion, boundary condition is a homogeneous Dirichlet one (hostile boundary condition).</p>","PeriodicalId":11254,"journal":{"name":"Discrete & Continuous Dynamical Systems - S","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A quantitative strong unique continuation property of a diffusive SIS model\",\"authors\":\"Taige Wang, Dihong Xu\",\"doi\":\"10.3934/dcdss.2022024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>This article is concerned with a strong unique continuation property of solutions for a diffusive SIS (Susceptible - Infected - Susceptible, or SI) model, which belongs to a type of observability inequalities in a time interval <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ [0, T] $\\\\end{document}</tex-math></inline-formula>. That is, if one can observe solution on a convex and connected bounded open set <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ \\\\omega $\\\\end{document}</tex-math></inline-formula> in a bounded domain <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ \\\\Omega $\\\\end{document}</tex-math></inline-formula> at time <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ t = T $\\\\end{document}</tex-math></inline-formula>, then the norms of solution on <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ [0,T) $\\\\end{document}</tex-math></inline-formula> on <inline-formula><tex-math id=\\\"M6\\\">\\\\begin{document}$ \\\\Omega $\\\\end{document}</tex-math></inline-formula> are observable. In our discussion, boundary condition is a homogeneous Dirichlet one (hostile boundary condition).</p>\",\"PeriodicalId\":11254,\"journal\":{\"name\":\"Discrete & Continuous Dynamical Systems - S\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete & Continuous Dynamical Systems - S\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/dcdss.2022024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Continuous Dynamical Systems - S","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcdss.2022024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
This article is concerned with a strong unique continuation property of solutions for a diffusive SIS (Susceptible - Infected - Susceptible, or SI) model, which belongs to a type of observability inequalities in a time interval \begin{document}$ [0, T] $\end{document}. That is, if one can observe solution on a convex and connected bounded open set \begin{document}$ \omega $\end{document} in a bounded domain \begin{document}$ \Omega $\end{document} at time \begin{document}$ t = T $\end{document}, then the norms of solution on \begin{document}$ [0,T) $\end{document} on \begin{document}$ \Omega $\end{document} are observable. In our discussion, boundary condition is a homogeneous Dirichlet one (hostile boundary condition).
A quantitative strong unique continuation property of a diffusive SIS model
This article is concerned with a strong unique continuation property of solutions for a diffusive SIS (Susceptible - Infected - Susceptible, or SI) model, which belongs to a type of observability inequalities in a time interval \begin{document}$ [0, T] $\end{document}. That is, if one can observe solution on a convex and connected bounded open set \begin{document}$ \omega $\end{document} in a bounded domain \begin{document}$ \Omega $\end{document} at time \begin{document}$ t = T $\end{document}, then the norms of solution on \begin{document}$ [0,T) $\end{document} on \begin{document}$ \Omega $\end{document} are observable. In our discussion, boundary condition is a homogeneous Dirichlet one (hostile boundary condition).