基于小波去噪和机器学习的眼底图像青光眼自动检测

Sibghatullah I. Khan, S. Choubey, A. Choubey, Abhishek Bhatt, Pandya Vyomal Naishadhkumar, M. M. Basha
{"title":"基于小波去噪和机器学习的眼底图像青光眼自动检测","authors":"Sibghatullah I. Khan, S. Choubey, A. Choubey, Abhishek Bhatt, Pandya Vyomal Naishadhkumar, M. M. Basha","doi":"10.1177/1063293X211026620","DOIUrl":null,"url":null,"abstract":"Glaucoma is a domineering and irretrievable neurodegenerative eye disease produced by the optical nerve head owed to extended intra-ocular stress inside the eye. Recognition of glaucoma is an essential job for ophthalmologists. In this paper, we propose a methodology to classify fundus images into normal and glaucoma categories. The proposed approach makes use of image denoising of digital fundus images by utilizing a non-Gaussian bivariate probability distribution function to model the statistics of wavelet coefficients of glaucoma images. The traditional image features were extracted followed by the popular feature selection algorithm. The selected features are then fed to the least square support vector machine classifier employing various kernel functions. The comparison result shows that the proposed approach offers maximum classification accuracy of nearly 91.22% over the existing best approaches.","PeriodicalId":10680,"journal":{"name":"Concurrent Engineering","volume":"78 1","pages":"103 - 115"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Automated glaucoma detection from fundus images using wavelet-based denoising and machine learning\",\"authors\":\"Sibghatullah I. Khan, S. Choubey, A. Choubey, Abhishek Bhatt, Pandya Vyomal Naishadhkumar, M. M. Basha\",\"doi\":\"10.1177/1063293X211026620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Glaucoma is a domineering and irretrievable neurodegenerative eye disease produced by the optical nerve head owed to extended intra-ocular stress inside the eye. Recognition of glaucoma is an essential job for ophthalmologists. In this paper, we propose a methodology to classify fundus images into normal and glaucoma categories. The proposed approach makes use of image denoising of digital fundus images by utilizing a non-Gaussian bivariate probability distribution function to model the statistics of wavelet coefficients of glaucoma images. The traditional image features were extracted followed by the popular feature selection algorithm. The selected features are then fed to the least square support vector machine classifier employing various kernel functions. The comparison result shows that the proposed approach offers maximum classification accuracy of nearly 91.22% over the existing best approaches.\",\"PeriodicalId\":10680,\"journal\":{\"name\":\"Concurrent Engineering\",\"volume\":\"78 1\",\"pages\":\"103 - 115\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concurrent Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/1063293X211026620\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrent Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1063293X211026620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

青光眼是一种顽固性、不可治愈的眼部神经退行性疾病,由视神经头引起,原因是眼内压力过大。青光眼的识别是眼科医生的一项重要工作。在本文中,我们提出了一种方法,将眼底图像分为正常和青光眼类别。该方法利用非高斯二元概率分布函数对青光眼图像的小波系数进行统计建模,对数字眼底图像进行去噪。提取传统的图像特征,然后采用流行的特征选择算法。然后将选择的特征馈送到使用各种核函数的最小二乘支持向量机分类器。对比结果表明,与现有最佳方法相比,该方法的分类准确率达到了近91.22%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated glaucoma detection from fundus images using wavelet-based denoising and machine learning
Glaucoma is a domineering and irretrievable neurodegenerative eye disease produced by the optical nerve head owed to extended intra-ocular stress inside the eye. Recognition of glaucoma is an essential job for ophthalmologists. In this paper, we propose a methodology to classify fundus images into normal and glaucoma categories. The proposed approach makes use of image denoising of digital fundus images by utilizing a non-Gaussian bivariate probability distribution function to model the statistics of wavelet coefficients of glaucoma images. The traditional image features were extracted followed by the popular feature selection algorithm. The selected features are then fed to the least square support vector machine classifier employing various kernel functions. The comparison result shows that the proposed approach offers maximum classification accuracy of nearly 91.22% over the existing best approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信