原生类型理论

Christian Williams, Michael Stay
{"title":"原生类型理论","authors":"Christian Williams, Michael Stay","doi":"10.4204/EPTCS.372.9","DOIUrl":null,"url":null,"abstract":"Native type systems are those in which type constructors are derived from term constructors, as well as the constructors of predicate logic and intuitionistic type theory. We present a method to construct native type systems for a broad class of languages, λ -theories with equality, by embedding such a theory into the internal language of its topos of presheaves. Native types provide total specification of the structure of terms; and by internalizing transition systems, native type systems serve to reason about structure and behavior simultaneously. The construction is functorial, thereby providing a shared framework of higher-order reasoning for many languages, including programming languages.","PeriodicalId":11810,"journal":{"name":"essentia law Merchant Shipping Act 1995","volume":"10 1","pages":"116-132"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Native Type Theory\",\"authors\":\"Christian Williams, Michael Stay\",\"doi\":\"10.4204/EPTCS.372.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Native type systems are those in which type constructors are derived from term constructors, as well as the constructors of predicate logic and intuitionistic type theory. We present a method to construct native type systems for a broad class of languages, λ -theories with equality, by embedding such a theory into the internal language of its topos of presheaves. Native types provide total specification of the structure of terms; and by internalizing transition systems, native type systems serve to reason about structure and behavior simultaneously. The construction is functorial, thereby providing a shared framework of higher-order reasoning for many languages, including programming languages.\",\"PeriodicalId\":11810,\"journal\":{\"name\":\"essentia law Merchant Shipping Act 1995\",\"volume\":\"10 1\",\"pages\":\"116-132\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"essentia law Merchant Shipping Act 1995\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.372.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"essentia law Merchant Shipping Act 1995","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.372.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

原生类型系统是指类型构造函数派生自术语构造函数、谓词逻辑和直觉型理论的构造函数的类型系统。我们提出了一种方法,通过将λ -理论嵌入到其presheaves拓扑的内部语言中,为一类广泛的语言构造具有相等性的本地类型系统。原生类型提供了术语结构的总体规范;通过内化转换系统,原生类型系统可以同时对结构和行为进行推理。这种构造是功能性的,因此为许多语言(包括编程语言)提供了一个高阶推理的共享框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Native Type Theory
Native type systems are those in which type constructors are derived from term constructors, as well as the constructors of predicate logic and intuitionistic type theory. We present a method to construct native type systems for a broad class of languages, λ -theories with equality, by embedding such a theory into the internal language of its topos of presheaves. Native types provide total specification of the structure of terms; and by internalizing transition systems, native type systems serve to reason about structure and behavior simultaneously. The construction is functorial, thereby providing a shared framework of higher-order reasoning for many languages, including programming languages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信