{"title":"粘弹性复合片材在玻璃钢平面船体外粘接中的应用","authors":"P. Townsend, J. C. Suárez, Á. Rodríguez-Ortíz","doi":"10.4028/p-o984an","DOIUrl":null,"url":null,"abstract":"The use of viscoelastic sheets in the hull of vessels built from GFRP has been raised in previous works as an option to protect the vessel from the destructive damage of slamming. The present work proposes its use in boats previously built by adhering to the outside of the hulls of the ships. Its installation process is shown, and this new type of installation is compared. Through impact tests with GFRP panels, it is shown that the viscoelastic material maintains its property of absorbing slamming energy and protecting the interior of the laminate. Fatigue tests on the order of 5x104 cycles are carried out to evaluate the impact force, the accelerations that deform the laminate and the virtual energy work imposed on the panel. This option shows that designers have a new option to protect the hull of already built boats.","PeriodicalId":34329,"journal":{"name":"Journal of Electrical and Computer Engineering Innovations","volume":"22 1","pages":"35 - 40"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Use of Hybrid Viscoelastic Sheets in the Shipbuilding of GFRP Planing Hull Vessels Externally Adhered to the Laminate\",\"authors\":\"P. Townsend, J. C. Suárez, Á. Rodríguez-Ortíz\",\"doi\":\"10.4028/p-o984an\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of viscoelastic sheets in the hull of vessels built from GFRP has been raised in previous works as an option to protect the vessel from the destructive damage of slamming. The present work proposes its use in boats previously built by adhering to the outside of the hulls of the ships. Its installation process is shown, and this new type of installation is compared. Through impact tests with GFRP panels, it is shown that the viscoelastic material maintains its property of absorbing slamming energy and protecting the interior of the laminate. Fatigue tests on the order of 5x104 cycles are carried out to evaluate the impact force, the accelerations that deform the laminate and the virtual energy work imposed on the panel. This option shows that designers have a new option to protect the hull of already built boats.\",\"PeriodicalId\":34329,\"journal\":{\"name\":\"Journal of Electrical and Computer Engineering Innovations\",\"volume\":\"22 1\",\"pages\":\"35 - 40\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrical and Computer Engineering Innovations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-o984an\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical and Computer Engineering Innovations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-o984an","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Use of Hybrid Viscoelastic Sheets in the Shipbuilding of GFRP Planing Hull Vessels Externally Adhered to the Laminate
The use of viscoelastic sheets in the hull of vessels built from GFRP has been raised in previous works as an option to protect the vessel from the destructive damage of slamming. The present work proposes its use in boats previously built by adhering to the outside of the hulls of the ships. Its installation process is shown, and this new type of installation is compared. Through impact tests with GFRP panels, it is shown that the viscoelastic material maintains its property of absorbing slamming energy and protecting the interior of the laminate. Fatigue tests on the order of 5x104 cycles are carried out to evaluate the impact force, the accelerations that deform the laminate and the virtual energy work imposed on the panel. This option shows that designers have a new option to protect the hull of already built boats.