{"title":"MEMS椭圆色散耦合系统的适位性","authors":"H. Gimperlein, Runan He, A. Lacey","doi":"10.3934/dcds.2023055","DOIUrl":null,"url":null,"abstract":"In this work, we study the local wellposedness of the solution to a nonlinear elliptic-dispersive coupled system which serves as a model for a Micro-Electro-Mechanical System (MEMS). A simple electrostatically actuated MEMS capacitor device consists of two parallel plates separated by a gas-filled thin gap. The nonlinear elliptic-dispersive coupled system modelling the device combines a linear elliptic equation for the gas pressure with a semilinear dispersive equation for the gap width. We show the local-in-time existence of strict solutions for the system, by combining elliptic regularity results for the elliptic equation, Lipschitz continuous dependence of its solution on that of the dispersive equation, and then local-in-time existence for a resulting abstract dispersive problem. Semigroup approaches are key to solve the abstract dispersive problem.","PeriodicalId":51007,"journal":{"name":"Discrete and Continuous Dynamical Systems","volume":"35 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Wellposedness of an elliptic-dispersive coupled system for MEMS\",\"authors\":\"H. Gimperlein, Runan He, A. Lacey\",\"doi\":\"10.3934/dcds.2023055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we study the local wellposedness of the solution to a nonlinear elliptic-dispersive coupled system which serves as a model for a Micro-Electro-Mechanical System (MEMS). A simple electrostatically actuated MEMS capacitor device consists of two parallel plates separated by a gas-filled thin gap. The nonlinear elliptic-dispersive coupled system modelling the device combines a linear elliptic equation for the gas pressure with a semilinear dispersive equation for the gap width. We show the local-in-time existence of strict solutions for the system, by combining elliptic regularity results for the elliptic equation, Lipschitz continuous dependence of its solution on that of the dispersive equation, and then local-in-time existence for a resulting abstract dispersive problem. Semigroup approaches are key to solve the abstract dispersive problem.\",\"PeriodicalId\":51007,\"journal\":{\"name\":\"Discrete and Continuous Dynamical Systems\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete and Continuous Dynamical Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/dcds.2023055\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Continuous Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/dcds.2023055","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Wellposedness of an elliptic-dispersive coupled system for MEMS
In this work, we study the local wellposedness of the solution to a nonlinear elliptic-dispersive coupled system which serves as a model for a Micro-Electro-Mechanical System (MEMS). A simple electrostatically actuated MEMS capacitor device consists of two parallel plates separated by a gas-filled thin gap. The nonlinear elliptic-dispersive coupled system modelling the device combines a linear elliptic equation for the gas pressure with a semilinear dispersive equation for the gap width. We show the local-in-time existence of strict solutions for the system, by combining elliptic regularity results for the elliptic equation, Lipschitz continuous dependence of its solution on that of the dispersive equation, and then local-in-time existence for a resulting abstract dispersive problem. Semigroup approaches are key to solve the abstract dispersive problem.
期刊介绍:
DCDS, series A includes peer-reviewed original papers and invited expository papers on the theory and methods of analysis, differential equations and dynamical systems. This journal is committed to recording important new results in its field and maintains the highest standards of innovation and quality. To be published in this journal, an original paper must be correct, new, nontrivial and of interest to a substantial number of readers.